Prove associativity for natural transformations
This commit is contained in:
parent
b8994b8f4a
commit
a64e2484e3
|
@ -9,6 +9,7 @@ import Cubical.GradLemma
|
|||
module UIP = Cubical.GradLemma
|
||||
open import Cubical.Sigma
|
||||
open import Cubical.NType
|
||||
open import Cubical.NType.Properties
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||
module Nat = Data.Nat
|
||||
|
||||
|
@ -125,10 +126,18 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
θ = proj₁ θ'
|
||||
η = proj₁ η'
|
||||
ζ = proj₁ ζ'
|
||||
θNat = proj₂ θ'
|
||||
ηNat = proj₂ η'
|
||||
ζNat = proj₂ ζ'
|
||||
L : NaturalTransformation A D
|
||||
L = (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ'))
|
||||
R : NaturalTransformation A D
|
||||
R = (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
||||
_g⊕f_ = _:⊕:_ {A} {B} {C}
|
||||
_h⊕g_ = _:⊕:_ {B} {C} {D}
|
||||
:assoc: : (_:⊕:_ {A} {C} {D} ζ' (_:⊕:_ {A} {B} {C} η' θ')) ≡ (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} ζ' η') θ')
|
||||
:assoc: = Σ≡ (funExt (λ _ → assoc)) {!!}
|
||||
:assoc: : L ≡ R
|
||||
:assoc: = lemSig (naturalIsProp {F = A} {D})
|
||||
L R (funExt (λ x → assoc))
|
||||
where
|
||||
open IsCategory (isCategory 𝔻)
|
||||
|
||||
|
|
Loading…
Reference in a new issue