Prove distributive law
This commit is contained in:
parent
a447cd9c7c
commit
a6b01929f0
|
@ -17,7 +17,7 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
private
|
||||
ℓ = ℓa ⊔ ℓb
|
||||
|
||||
open Category ℂ hiding (IsAssociative)
|
||||
open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_)
|
||||
open NaturalTransformation ℂ ℂ
|
||||
record RawMonad : Set ℓ where
|
||||
field
|
||||
|
@ -60,33 +60,6 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
raw : RawMonad
|
||||
isMonad : IsMonad raw
|
||||
open IsMonad isMonad public
|
||||
module R = Functor R
|
||||
module RR = Functor F[ R ∘ R ]
|
||||
module _ {X Y Z : _} {g : ℂ [ Y , R.func* Z ]} {f : ℂ [ X , R.func* Y ]} where
|
||||
lem : μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡ μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f)
|
||||
lem = begin
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ∎
|
||||
where
|
||||
open Category ℂ using () renaming (isAssociative to c-assoc)
|
||||
μN : Natural F[ R ∘ R ] R μ
|
||||
-- μN : (f : ℂ [ Y , R.func* Z ]) → μ (R.func* Z) ∘ RR.func→ f ≡ R.func→ f ∘ μ Y
|
||||
μN = proj₂ μNat
|
||||
μg : μ (R.func* Z) ∘ RR.func→ g ≡ R.func→ g ∘ μ Y
|
||||
μg = μN g
|
||||
μf : μ (R.func* Y) ∘ RR.func→ f ≡ R.func→ f ∘ μ X
|
||||
μf = μN f
|
||||
ηN : Natural F.identity R η
|
||||
ηN = proj₂ ηNat
|
||||
ηg : η (R.func* Z) ∘ g ≡ R.func→ g ∘ η Y
|
||||
ηg = ηN g
|
||||
-- Alternate route:
|
||||
res = begin
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ c-assoc ⟩
|
||||
μ Z ∘ R.func→ g ∘ μ Y ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ (R.func→ g ∘ μ Y) ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ (μ (R.func* Z) ∘ RR.func→ g) ∘ R.func→ f ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ∎
|
||||
|
||||
-- "A monad in the Kleisli form" [voe]
|
||||
module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
|
@ -221,9 +194,38 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
isDistributive : IsDistributive
|
||||
isDistributive {X} {Y} {Z} g f = begin
|
||||
rr g ∘ rr f ≡⟨⟩
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ {!!} ⟩
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ sym lem2 ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨⟩
|
||||
μ Z ∘ R.func→ (rr g ∘ f) ∎
|
||||
where
|
||||
-- Proved it in reverse here... otherwise it could be neatly inlined.
|
||||
lem2
|
||||
: μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f)
|
||||
≡ μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f)
|
||||
lem2 = begin
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨ cong (λ φ → μ Z ∘ φ) distrib ⟩
|
||||
μ Z ∘ (R.func→ (μ Z) ∘ R.func→ (R.func→ g) ∘ R.func→ f) ≡⟨⟩
|
||||
μ Z ∘ (R.func→ (μ Z) ∘ RR.func→ g ∘ R.func→ f) ≡⟨ {!!} ⟩ -- ●-solver?
|
||||
(μ Z ∘ R.func→ (μ Z)) ∘ (RR.func→ g ∘ R.func→ f) ≡⟨ cong (λ φ → φ ∘ (RR.func→ g ∘ R.func→ f)) lemmm ⟩
|
||||
(μ Z ∘ μ (R.func* Z)) ∘ (RR.func→ g ∘ R.func→ f) ≡⟨ {!!} ⟩ -- ●-solver?
|
||||
μ Z ∘ μ (R.func* Z) ∘ RR.func→ g ∘ R.func→ f ≡⟨ {!!} ⟩ -- ●-solver + lem4
|
||||
μ Z ∘ R.func→ g ∘ μ Y ∘ R.func→ f ≡⟨ sym (Category.isAssociative ℂ) ⟩
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ∎
|
||||
where
|
||||
module RR = Functor F[ R ∘ R ]
|
||||
distrib : ∀ {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
|
||||
→ R.func→ (a ∘ b ∘ c)
|
||||
≡ R.func→ a ∘ R.func→ b ∘ R.func→ c
|
||||
distrib = {!!}
|
||||
comm : ∀ {A B C D E}
|
||||
→ {a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
|
||||
→ a ∘ (b ∘ c ∘ d) ≡ a ∘ b ∘ c ∘ d
|
||||
comm = {!!}
|
||||
μN = proj₂ μNat
|
||||
lemmm : μ Z ∘ R.func→ (μ Z) ≡ μ Z ∘ μ (R.func* Z)
|
||||
lemmm = isAssociative
|
||||
lem4 : μ (R.func* Z) ∘ RR.func→ g ≡ R.func→ g ∘ μ Y
|
||||
lem4 = μN g
|
||||
|
||||
forthIsMonad : K.IsMonad (forthRaw raw)
|
||||
Kis.isIdentity forthIsMonad = isIdentity
|
||||
|
|
Loading…
Reference in a new issue