Refactor category of categories
No longer actually define the category. Just define the raw category and a few results about it.
This commit is contained in:
parent
32b9ce2ea8
commit
a87d404aad
|
@ -86,34 +86,43 @@ module _ (ℓ ℓ' : Level) where
|
|||
ident-l : identity ∘f F ≡ F
|
||||
ident-l = Functor≡ eq* eq→
|
||||
|
||||
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
RawCat =
|
||||
record
|
||||
{ Object = Category ℓ ℓ'
|
||||
; Arrow = Functor
|
||||
; 𝟙 = identity
|
||||
; _∘_ = _∘f_
|
||||
-- What gives here? Why can I not name the variables directly?
|
||||
-- ; isCategory = record
|
||||
-- { assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H}
|
||||
-- ; ident = ident-r , ident-l
|
||||
-- }
|
||||
}
|
||||
open IsCategory
|
||||
instance
|
||||
:isCategory: : IsCategory RawCat
|
||||
assoc :isCategory: {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||
ident :isCategory: = ident-r , ident-l
|
||||
arrowIsSet :isCategory: = {!!}
|
||||
univalent :isCategory: = {!!}
|
||||
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
RawCat =
|
||||
record
|
||||
{ Object = Category ℓ ℓ'
|
||||
; Arrow = Functor
|
||||
; 𝟙 = identity
|
||||
; _∘_ = _∘f_
|
||||
-- What gives here? Why can I not name the variables directly?
|
||||
-- ; isCategory = record
|
||||
-- { assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H}
|
||||
-- ; ident = ident-r , ident-l
|
||||
-- }
|
||||
}
|
||||
private
|
||||
open RawCategory
|
||||
assoc : IsAssociative RawCat
|
||||
assoc {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||
-- TODO: Rename `ident'` to `ident` after changing how names are exposed in Functor.
|
||||
ident' : IsIdentity RawCat identity
|
||||
ident' = ident-r , ident-l
|
||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||
-- however, form a groupoid! Therefore there is no (1-)category of
|
||||
-- categories. There does, however, exist a 2-category of 1-categories.
|
||||
|
||||
Cat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
Category.raw Cat = RawCat
|
||||
-- Because of the note above there is not category of categories.
|
||||
Cat : (unprovable : IsCategory RawCat) → Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
Category.raw (Cat _) = RawCat
|
||||
Category.isCategory (Cat unprovable) = unprovable
|
||||
-- Category.raw Cat _ = RawCat
|
||||
-- Category.isCategory Cat unprovable = unprovable
|
||||
|
||||
module _ {ℓ ℓ' : Level} where
|
||||
-- The following to some extend depends on the category of categories being a
|
||||
-- category. In some places it may not actually be needed, however.
|
||||
module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||
module _ (ℂ 𝔻 : Category ℓ ℓ') where
|
||||
private
|
||||
Catt = Cat ℓ ℓ'
|
||||
Catt = Cat ℓ ℓ' unprovable
|
||||
:Object: = Object ℂ × Object 𝔻
|
||||
:Arrow: : :Object: → :Object: → Set ℓ'
|
||||
:Arrow: (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
||||
|
@ -131,27 +140,23 @@ module _ {ℓ ℓ' : Level} where
|
|||
RawCategory.Arrow :rawProduct: = :Arrow:
|
||||
RawCategory.𝟙 :rawProduct: = :𝟙:
|
||||
RawCategory._∘_ :rawProduct: = _:⊕:_
|
||||
open RawCategory :rawProduct:
|
||||
|
||||
module C = Category ℂ
|
||||
module D = Category 𝔻
|
||||
postulate
|
||||
issSet : {A B : RawCategory.Object :rawProduct:} → isSet (RawCategory.Arrow :rawProduct: A B)
|
||||
issSet : {A B : RawCategory.Object :rawProduct:} → isSet (Arrow A B)
|
||||
ident' : IsIdentity :𝟙:
|
||||
ident'
|
||||
= Σ≡ (fst C.ident) (fst D.ident)
|
||||
, Σ≡ (snd C.ident) (snd D.ident)
|
||||
postulate univalent : Univalence.Univalent :rawProduct: ident'
|
||||
instance
|
||||
:isCategory: : IsCategory :rawProduct:
|
||||
-- :isCategory: = record
|
||||
-- { assoc = Σ≡ C.assoc D.assoc
|
||||
-- ; ident
|
||||
-- = Σ≡ (fst C.ident) (fst D.ident)
|
||||
-- , Σ≡ (snd C.ident) (snd D.ident)
|
||||
-- ; arrow-is-set = issSet
|
||||
-- ; univalent = {!!}
|
||||
-- }
|
||||
IsCategory.assoc :isCategory: = Σ≡ C.assoc D.assoc
|
||||
IsCategory.ident :isCategory:
|
||||
= Σ≡ (fst C.ident) (fst D.ident)
|
||||
, Σ≡ (snd C.ident) (snd D.ident)
|
||||
IsCategory.ident :isCategory: = ident'
|
||||
IsCategory.arrowIsSet :isCategory: = issSet
|
||||
IsCategory.univalent :isCategory: = {!!}
|
||||
IsCategory.univalent :isCategory: = univalent
|
||||
|
||||
:product: : Category ℓ ℓ'
|
||||
Category.raw :product: = :rawProduct:
|
||||
|
@ -209,32 +214,33 @@ module _ {ℓ ℓ' : Level} where
|
|||
uniq = x , isUniq
|
||||
|
||||
instance
|
||||
isProduct : IsProduct (Cat ℓ ℓ') proj₁ proj₂
|
||||
isProduct : IsProduct Catt proj₁ proj₂
|
||||
isProduct = uniq
|
||||
|
||||
product : Product {ℂ = (Cat ℓ ℓ')} ℂ 𝔻
|
||||
product : Product {ℂ = Catt} ℂ 𝔻
|
||||
product = record
|
||||
{ obj = :product:
|
||||
; proj₁ = proj₁
|
||||
; proj₂ = proj₂
|
||||
}
|
||||
|
||||
module _ {ℓ ℓ' : Level} where
|
||||
module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||
Catt = Cat ℓ ℓ' unprovable
|
||||
instance
|
||||
hasProducts : HasProducts (Cat ℓ ℓ')
|
||||
hasProducts = record { product = product }
|
||||
hasProducts : HasProducts Catt
|
||||
hasProducts = record { product = product unprovable }
|
||||
|
||||
-- Basically proves that `Cat ℓ ℓ` is cartesian closed.
|
||||
module _ (ℓ : Level) where
|
||||
module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
||||
private
|
||||
open Data.Product
|
||||
open import Cat.Categories.Fun
|
||||
|
||||
Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ)
|
||||
Catℓ = Cat ℓ ℓ
|
||||
Catℓ = Cat ℓ ℓ unprovable
|
||||
module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
||||
private
|
||||
:obj: : Object (Cat ℓ ℓ)
|
||||
:obj: : Object Catℓ
|
||||
:obj: = Fun {ℂ = ℂ} {𝔻 = 𝔻}
|
||||
|
||||
:func*: : Functor ℂ 𝔻 × Object ℂ → Object 𝔻
|
||||
|
@ -276,7 +282,7 @@ module _ (ℓ : Level) where
|
|||
result : 𝔻 [ func* F A , func* G B ]
|
||||
result = l
|
||||
|
||||
_×p_ = product
|
||||
_×p_ = product unprovable
|
||||
|
||||
module _ {c : Functor ℂ 𝔻 × Object ℂ} where
|
||||
private
|
||||
|
@ -303,109 +309,109 @@ module _ (ℓ : Level) where
|
|||
open module 𝔻 = Category 𝔻
|
||||
open module F = IsFunctor (F .isFunctor)
|
||||
|
||||
module _ {F×A G×B H×C : Functor ℂ 𝔻 × Object ℂ} where
|
||||
F = F×A .proj₁
|
||||
A = F×A .proj₂
|
||||
G = G×B .proj₁
|
||||
B = G×B .proj₂
|
||||
H = H×C .proj₁
|
||||
C = H×C .proj₂
|
||||
-- Not entirely clear what this is at this point:
|
||||
_P⊕_ = Category._∘_ (Product.obj (:obj: ×p ℂ)) {F×A} {G×B} {H×C}
|
||||
module _
|
||||
-- NaturalTransformation F G × ℂ .Arrow A B
|
||||
{θ×f : NaturalTransformation F G × ℂ [ A , B ]}
|
||||
{η×g : NaturalTransformation G H × ℂ [ B , C ]} where
|
||||
private
|
||||
θ : Transformation F G
|
||||
θ = proj₁ (proj₁ θ×f)
|
||||
θNat : Natural F G θ
|
||||
θNat = proj₂ (proj₁ θ×f)
|
||||
f : ℂ [ A , B ]
|
||||
f = proj₂ θ×f
|
||||
η : Transformation G H
|
||||
η = proj₁ (proj₁ η×g)
|
||||
ηNat : Natural G H η
|
||||
ηNat = proj₂ (proj₁ η×g)
|
||||
g : ℂ [ B , C ]
|
||||
g = proj₂ η×g
|
||||
-- module _ {F×A G×B H×C : Functor ℂ 𝔻 × Object ℂ} where
|
||||
-- F = F×A .proj₁
|
||||
-- A = F×A .proj₂
|
||||
-- G = G×B .proj₁
|
||||
-- B = G×B .proj₂
|
||||
-- H = H×C .proj₁
|
||||
-- C = H×C .proj₂
|
||||
-- -- Not entirely clear what this is at this point:
|
||||
-- _P⊕_ = Category._∘_ (Product.obj (:obj: ×p ℂ)) {F×A} {G×B} {H×C}
|
||||
-- module _
|
||||
-- -- NaturalTransformation F G × ℂ .Arrow A B
|
||||
-- {θ×f : NaturalTransformation F G × ℂ [ A , B ]}
|
||||
-- {η×g : NaturalTransformation G H × ℂ [ B , C ]} where
|
||||
-- private
|
||||
-- θ : Transformation F G
|
||||
-- θ = proj₁ (proj₁ θ×f)
|
||||
-- θNat : Natural F G θ
|
||||
-- θNat = proj₂ (proj₁ θ×f)
|
||||
-- f : ℂ [ A , B ]
|
||||
-- f = proj₂ θ×f
|
||||
-- η : Transformation G H
|
||||
-- η = proj₁ (proj₁ η×g)
|
||||
-- ηNat : Natural G H η
|
||||
-- ηNat = proj₂ (proj₁ η×g)
|
||||
-- g : ℂ [ B , C ]
|
||||
-- g = proj₂ η×g
|
||||
|
||||
ηθNT : NaturalTransformation F H
|
||||
ηθNT = Category._∘_ Fun {F} {G} {H} (η , ηNat) (θ , θNat)
|
||||
-- ηθNT : NaturalTransformation F H
|
||||
-- ηθNT = Category._∘_ Fun {F} {G} {H} (η , ηNat) (θ , θNat)
|
||||
|
||||
ηθ = proj₁ ηθNT
|
||||
ηθNat = proj₂ ηθNT
|
||||
-- ηθ = proj₁ ηθNT
|
||||
-- ηθNat = proj₂ ηθNT
|
||||
|
||||
:distrib: :
|
||||
𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ func→ F ( ℂ [ g ∘ f ] ) ]
|
||||
≡ 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ]
|
||||
:distrib: = begin
|
||||
𝔻 [ (ηθ C) ∘ func→ F (ℂ [ g ∘ f ]) ]
|
||||
≡⟨ ηθNat (ℂ [ g ∘ f ]) ⟩
|
||||
𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
||||
𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
||||
≡⟨ sym assoc ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) assoc ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ func→ H f ∘ η A ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ η B ∘ func→ G f ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (sym assoc) ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ η B ∘ 𝔻 [ func→ G f ∘ θ A ] ] ]
|
||||
≡⟨ assoc ⟩
|
||||
𝔻 [ 𝔻 [ func→ H g ∘ η B ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ func→ G f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ] ∎
|
||||
where
|
||||
open Category 𝔻
|
||||
module H = IsFunctor (H .isFunctor)
|
||||
-- :distrib: :
|
||||
-- 𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ func→ F ( ℂ [ g ∘ f ] ) ]
|
||||
-- ≡ 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ]
|
||||
-- :distrib: = begin
|
||||
-- 𝔻 [ (ηθ C) ∘ func→ F (ℂ [ g ∘ f ]) ]
|
||||
-- ≡⟨ ηθNat (ℂ [ g ∘ f ]) ⟩
|
||||
-- 𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
||||
-- 𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
||||
-- ≡⟨ sym assoc ⟩
|
||||
-- 𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) assoc ⟩
|
||||
-- 𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ func→ H f ∘ η A ] ∘ θ A ] ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
||||
-- 𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ η B ∘ func→ G f ] ∘ θ A ] ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (sym assoc) ⟩
|
||||
-- 𝔻 [ func→ H g ∘ 𝔻 [ η B ∘ 𝔻 [ func→ G f ∘ θ A ] ] ]
|
||||
-- ≡⟨ assoc ⟩
|
||||
-- 𝔻 [ 𝔻 [ func→ H g ∘ η B ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ func→ G f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
||||
-- 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
-- ≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||
-- 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ] ∎
|
||||
-- where
|
||||
-- open Category 𝔻
|
||||
-- module H = IsFunctor (H .isFunctor)
|
||||
|
||||
:eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻
|
||||
:eval: = record
|
||||
{ raw = record
|
||||
{ func* = :func*:
|
||||
; func→ = λ {dom} {cod} → :func→: {dom} {cod}
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = λ {o} → :ident: {o}
|
||||
; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y}
|
||||
}
|
||||
}
|
||||
-- :eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻
|
||||
-- :eval: = record
|
||||
-- { raw = record
|
||||
-- { func* = :func*:
|
||||
-- ; func→ = λ {dom} {cod} → :func→: {dom} {cod}
|
||||
-- }
|
||||
-- ; isFunctor = record
|
||||
-- { ident = λ {o} → :ident: {o}
|
||||
-- ; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y}
|
||||
-- }
|
||||
-- }
|
||||
|
||||
module _ (𝔸 : Category ℓ ℓ) (F : Functor ((𝔸 ×p ℂ) .Product.obj) 𝔻) where
|
||||
open HasProducts (hasProducts {ℓ} {ℓ}) renaming (_|×|_ to parallelProduct)
|
||||
-- module _ (𝔸 : Category ℓ ℓ) (F : Functor ((𝔸 ×p ℂ) .Product.obj) 𝔻) where
|
||||
-- open HasProducts (hasProducts {ℓ} {ℓ}) renaming (_|×|_ to parallelProduct)
|
||||
|
||||
postulate
|
||||
transpose : Functor 𝔸 :obj:
|
||||
eq : Catℓ [ :eval: ∘ (parallelProduct transpose (𝟙 Catℓ {A = ℂ})) ] ≡ F
|
||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
-- eq' : (Catℓ [ :eval: ∘
|
||||
-- (record { product = product } HasProducts.|×| transpose)
|
||||
-- (𝟙 Catℓ)
|
||||
-- ])
|
||||
-- ≡ F
|
||||
-- postulate
|
||||
-- transpose : Functor 𝔸 :obj:
|
||||
-- eq : Catℓ [ :eval: ∘ (parallelProduct transpose (𝟙 Catℓ {A = ℂ})) ] ≡ F
|
||||
-- -- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
-- -- eq' : (Catℓ [ :eval: ∘
|
||||
-- -- (record { product = product } HasProducts.|×| transpose)
|
||||
-- -- (𝟙 Catℓ)
|
||||
-- -- ])
|
||||
-- -- ≡ F
|
||||
|
||||
-- For some reason after `e8215b2c051062c6301abc9b3f6ec67106259758`
|
||||
-- `catTranspose` makes Agda hang. catTranspose : ∃![ F~ ] (Catℓ [
|
||||
-- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||
-- transpose , eq
|
||||
-- -- For some reason after `e8215b2c051062c6301abc9b3f6ec67106259758`
|
||||
-- -- `catTranspose` makes Agda hang. catTranspose : ∃![ F~ ] (Catℓ [
|
||||
-- -- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||
-- -- transpose , eq
|
||||
|
||||
:isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval:
|
||||
:isExponential: = {!catTranspose!}
|
||||
where
|
||||
open HasProducts (hasProducts {ℓ} {ℓ}) using (_|×|_)
|
||||
-- :isExponential: = λ 𝔸 F → transpose 𝔸 F , eq' 𝔸 F
|
||||
-- :isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval:
|
||||
-- :isExponential: = {!catTranspose!}
|
||||
-- where
|
||||
-- open HasProducts (hasProducts {ℓ} {ℓ}) using (_|×|_)
|
||||
-- -- :isExponential: = λ 𝔸 F → transpose 𝔸 F , eq' 𝔸 F
|
||||
|
||||
-- :exponent: : Exponential (Cat ℓ ℓ) A B
|
||||
:exponent: : Exponential Catℓ ℂ 𝔻
|
||||
:exponent: = record
|
||||
{ obj = :obj:
|
||||
; eval = :eval:
|
||||
; isExponential = :isExponential:
|
||||
}
|
||||
-- -- :exponent: : Exponential (Cat ℓ ℓ) A B
|
||||
-- :exponent: : Exponential Catℓ ℂ 𝔻
|
||||
-- :exponent: = record
|
||||
-- { obj = :obj:
|
||||
-- ; eval = :eval:
|
||||
-- ; isExponential = :isExponential:
|
||||
-- }
|
||||
|
||||
hasExponentials : HasExponentials (Cat ℓ ℓ)
|
||||
hasExponentials = record { exponent = :exponent: }
|
||||
-- hasExponentials : HasExponentials (Cat ℓ ℓ)
|
||||
-- hasExponentials = record { exponent = :exponent: }
|
||||
|
|
Loading…
Reference in a new issue