Move lemmas about equivalences to that module

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-23 17:04:27 +02:00
parent 313c7593d1
commit aa52bc8f07
5 changed files with 82 additions and 104 deletions

View File

@ -42,91 +42,16 @@ module _ ( : Level) where
IsPreCategory.isIdentity isPreCat {A} {B} = isIdentity {A} {B}
IsPreCategory.arrowsAreSets isPreCat {A} {B} = arrowsAreSets {A} {B}
open IsPreCategory isPreCat hiding (_<<<_)
isIso = TypeIsomorphism
module _ {hA hB : hSet } where
open Σ hA renaming (fst to A ; snd to sA)
open Σ hB renaming (fst to B ; snd to sB)
lem1 : (f : A B) isSet A isSet B isProp (isIso f)
lem1 f sA sB = res
where
module _ (x y : isIso f) where
module x = Σ x renaming (fst to inverse ; snd to areInverses)
module y = Σ y renaming (fst to inverse ; snd to areInverses)
-- I had a lot of difficulty using the corresponding proof where
-- AreInverses is defined. This is sadly a bit anti-modular. The
-- reason for my troubles is probably related to the type of objects
-- being hSet's rather than sets.
p : {f} g isProp (AreInverses {A = A} {B} f g)
p {f} g xx yy i = ve-re , re-ve
where
ve-re : g f idFun _
ve-re = arrowsAreSets {A = hA} {B = hA} _ _ (fst xx) (fst yy) i
re-ve : f g idFun _
re-ve = arrowsAreSets {A = hB} {B = hB} _ _ (snd xx) (snd yy) i
1eq : x.inverse y.inverse
1eq = begin
x.inverse ≡⟨⟩
x.inverse idFun _ ≡⟨ cong (λ φ x.inverse φ) (sym (snd y.areInverses))
x.inverse (f y.inverse) ≡⟨⟩
(x.inverse f) y.inverse ≡⟨ cong (λ φ φ y.inverse) (fst x.areInverses)
idFun _ y.inverse ≡⟨⟩
y.inverse
2eq : (λ i AreInverses f (1eq i)) [ x.areInverses y.areInverses ]
2eq = lemPropF p 1eq
res : x y
res i = 1eq i , 2eq i
module _ {a b : Level} {A : Set a} {P : A Set b} where
lem2 : ((x : A) isProp (P x)) (p q : Σ A P)
(p q) (fst p fst q)
lem2 pA p q = fromIsomorphism _ _ iso
where
f : {p q} p q fst p fst q
f e i = fst (e i)
g : {p q} fst p fst q p q
g {p} {q} = lemSig pA p q
ve-re : (e : p q) (g f) e e
ve-re = pathJ (\ q (e : p q) (g f) e e)
(\ i j p .fst , propSet (pA (p .fst)) (p .snd) (p .snd) (λ i (g {p} {p} f) (λ i₁ p) i .snd) (λ i p .snd) i j ) q
re-ve : (e : fst p fst q) (f {p} {q} g {p} {q}) e e
re-ve e = refl
inv : AreInverses (f {p} {q}) (g {p} {q})
inv = funExt ve-re , funExt re-ve
iso : (p q) (fst p fst q)
iso = f , g , inv
module _ {a b : Level} {A : Set a} {B : Set b} where
lem4 : isSet A isSet B (f : A B)
isEquiv A B f isIso f
lem4 sA sB f =
let
obv : isEquiv A B f isIso f
obv = toIso A B
inv : isIso f isEquiv A B f
inv = fromIso A B
re-ve : (x : isEquiv A B f) (inv obv) x x
re-ve = inverse-from-to-iso A B
ve-re : (x : isIso f) (obv inv) x x
ve-re = inverse-to-from-iso A B sA sB
iso : isEquiv A B f isIso f
iso = obv , inv , funExt re-ve , funExt ve-re
in fromIsomorphism _ _ iso
open IsPreCategory isPreCat
module _ {hA hB : Object} where
open Σ hA renaming (fst to A ; snd to sA)
open Σ hB renaming (fst to B ; snd to sB)
-- lem3 and the equivalence from lem4
step0 : Σ (A B) (isEquiv A B) Σ (A B) isIso
step0 = equivSig (lem4 sA sB)
-- lem2 with propIsSet
step2 : (hA hB) (A B)
step2 = lem2 (λ A isSetIsProp) hA hB
univ≃ : (hA hB) (hA hB)
univ≃ = step2 univalence step0
univ≃
= equivSigProp (λ A isSetIsProp)
univalence
equivSig {P = isEquiv A B} {Q = TypeIsomorphism} (equiv≃iso sA sB)
univalent : Univalent
univalent = univalenceFrom≃ univ≃

View File

@ -119,7 +119,7 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
--
-- [HoTT §9.1.4]
idToIso : (A B : Object) A B A B
idToIso A B eq = transp (\ i A eq i) (idIso A)
idToIso A B eq = subst eq (idIso A)
Univalent : Set (a b)
Univalent = {A B : Object} isEquiv (A B) (A B) (idToIso A B)
@ -348,7 +348,7 @@ module _ {a b : Level} ( : RawCategory a b) where
coe refl f ≡⟨ id-coe
f ≡⟨ sym rightIdentity
f <<< identity ≡⟨ cong (f <<<_) (sym subst-neutral)
f <<< _ ) a' p
f <<< _ ≡⟨ {!!} _ ) a' p
module _ {b' : Object} (p : b b') where
private
@ -431,28 +431,17 @@ module _ {a b : Level} ( : RawCategory a b) where
coe-dom : {f : Arrow A X} coe p-dom f f <<< ι~
coe-dom {f} = begin
coe p-dom f
≡⟨ 9-1-9 p refl f
fst (idToIso _ _ refl) <<< f <<< fst (snd (idToIso _ _ p))
≡⟨ cong (λ φ φ <<< f <<< fst (snd (idToIso _ _ p))) subst-neutral
identity <<< f <<< fst (snd (idToIso _ _ p))
≡⟨ cong (λ φ identity <<< f <<< φ) (cong (λ x (fst (snd x))) lem)
identity <<< f <<< ι~
≡⟨ cong (_<<< ι~) leftIdentity
coe p-dom f ≡⟨ 9-1-9-left f p
f <<< fst (snd (idToIso _ _ (isoToId iso))) ≡⟨⟩
f <<< fst (snd (idToIso _ _ p)) ≡⟨ cong (f <<<_) (cong (fst snd) lem)
f <<< ι~
coe-cod : {f : Arrow X A} coe p-cod f ι <<< f
coe-cod {f} = begin
coe p-cod f
≡⟨ 9-1-9 refl p f
fst (idToIso _ _ p) <<< f <<< fst (snd (idToIso _ _ refl))
≡⟨ cong (λ φ fst (idToIso _ _ p) <<< f <<< φ) subst-neutral
fst (idToIso _ _ p) <<< f <<< identity
≡⟨ cong (λ φ φ <<< f <<< identity) (cong fst lem)
ι <<< f <<< identity
≡⟨ sym isAssociative
ι <<< (f <<< identity)
≡⟨ cong (ι <<<_) rightIdentity
≡⟨ 9-1-9-right f p
fst (idToIso _ _ p) <<< f
≡⟨ cong (λ φ φ <<< f) (cong fst lem)
ι <<< f
module _ {f : Arrow A X} {g : Arrow B X} (q : PathP (λ i p-dom i) f g) where

View File

@ -7,7 +7,6 @@ open import Cat.Equivalence
open import Cat.Category
module _ {a b : Level} ( : Category a b) where
open Category
module _ (A B : Object) where
@ -18,8 +17,6 @@ module _ {a b : Level} ( : Category a b) where
fst : [ object , A ]
snd : [ object , B ]
-- FIXME Not sure this is actually a proposition - so this name is
-- misleading.
record IsProduct (raw : RawProduct) : Set (a b) where
open RawProduct raw public
field

View File

@ -7,7 +7,10 @@ open import Cubical.PathPrelude hiding (inverse)
open import Cubical.PathPrelude using (isEquiv ; isContr ; fiber) public
open import Cubical.GradLemma hiding (isoToPath)
open import Cat.Prelude using (lemPropF ; setPi ; lemSig ; propSet ; Preorder ; equalityIsEquivalence ; propSig ; id-coe)
open import Cat.Prelude using
( lemPropF ; setPi ; lemSig ; propSet
; Preorder ; equalityIsEquivalence ; propSig ; id-coe
; Setoid )
import Cubical.Univalence as U
@ -327,6 +330,48 @@ preorder≅ = record
k = pathJ D (trans id-coe id-coe) B (sym p)
in k
setoid≅ : ( : Level) Setoid _ _
setoid≅ = record
{ Carrier = Set
; _≈_ = _≅_
; isEquivalence = record
{ refl = idFun _ , idFun _ , (funExt λ _ refl) , (funExt λ _ refl)
; sym = symmetryIso
; trans = composeIso
}
}
setoid≃ : ( : Level) Setoid _ _
setoid≃ = record
{ Carrier = Set
; _≈_ = _≃_
; isEquivalence = record
{ refl = idEquiv
; sym = Equivalence.symmetry
; trans = λ x x₁ Equivalence.compose x x₁
}
}
-- If the second component of a pair is propositional, then equality of such
-- pairs is equivalent to equality of their first components.
module _ {a b : Level} {A : Set a} {P : A Set b} where
equivSigProp : ((x : A) isProp (P x)) {p q : Σ A P}
(p q) (fst p fst q)
equivSigProp pA {p} {q} = fromIsomorphism _ _ iso
where
f : {p q} p q fst p fst q
f = cong fst
g : {p q} fst p fst q p q
g = lemSig pA _ _
ve-re : (e : p q) (g f) e e
ve-re = pathJ (\ q (e : p q) (g f) e e)
(\ i j p .fst , propSet (pA (p .fst)) (p .snd) (p .snd) (λ i (g {p} {p} f) (λ i₁ p) i .snd) (λ i p .snd) i j ) q
re-ve : (e : fst p fst q) (f {p} {q} g {p} {q}) e e
re-ve e = refl
inv : AreInverses (f {p} {q}) (g {p} {q})
inv = funExt ve-re , funExt re-ve
iso : (p q) (fst p fst q)
iso = f , g , inv
module _ { : Level} {A B : Set } where
isoToPath : (A B) (A B)
@ -347,6 +392,24 @@ module _ { : Level} {A B : Set } where
aux : (A U.≃ B) (A B)
aux = fromIsomorphism _ _ (doEta , deEta , funExt (λ{ (U.con _ _) refl}) , refl)
-- Equivalence is equivalent to isomorphism when the equivalence (resp.
-- isomorphism) acts on sets.
module _ (sA : isSet A) (sB : isSet B) where
equiv≃iso : (f : A B) isEquiv A B f Isomorphism f
equiv≃iso f =
let
obv : isEquiv A B f Isomorphism f
obv = toIso A B
inv : Isomorphism f isEquiv A B f
inv = fromIso A B
re-ve : (x : isEquiv A B f) (inv obv) x x
re-ve = inverse-from-to-iso A B
ve-re : (x : Isomorphism f) (obv inv) x x
ve-re = inverse-to-from-iso A B sA sB
iso : isEquiv A B f Isomorphism f
iso = obv , inv , funExt re-ve , funExt ve-re
in fromIsomorphism _ _ iso
-- A few results that I have not generalized to work with both the eta and no-eta variable of ≃
module _ {a b : Level} {A : Set a} {P : A Set b} where
-- Equality on sigma's whose second component is a proposition is equivalent
@ -438,6 +501,8 @@ module _ {a b : Level} {A : Set a} {B : Set b} where
in fromIsomorphism _ _ iso
module _ {a b : Level} {A : Set a} {P : A Set b} where
-- Equivalence of pairs whose first components are identitical can be obtained
-- from an equivalence of their seecond components.
equivSig : {c : Level} {Q : A Set c}
((a : A) P a Q a) Σ A P Σ A Q
equivSig {Q = Q} eA = res

View File

@ -76,7 +76,9 @@ module _ {a b : Level} {A : Set a} {B : A → Set b} {a b : Σ A B}
snd (Σ≡ i) = snd≡ i
import Relation.Binary
open Relation.Binary public using (Preorder ; Transitive ; IsEquivalence ; Rel)
open Relation.Binary public using
( Preorder ; Transitive ; IsEquivalence ; Rel
; Setoid )
equalityIsEquivalence : { : Level} {A : Set } IsEquivalence {A = A} _≡_
IsEquivalence.refl equalityIsEquivalence = refl