[WIP] natural transformations are sets

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-16 10:22:46 +01:00
parent 7d4aae4f49
commit ad84b15da5

View file

@ -6,6 +6,7 @@ open import Cubical
open import Function
open import Data.Product
import Cubical.GradLemma
module UIP = Cubical.GradLemma
open import Cat.Category
open import Cat.Category.Functor
@ -117,11 +118,29 @@ module _ {c c' d d' : Level} { : Category c c'} {𝔻 : Cat
lem : (λ _ Natural F G θ) [ (λ f θNat f) (λ f θNat' f) ]
lem = λ i f 𝔻.arrowIsSet _ _ (θNat f) (θNat' f) i
naturalTransformationIsSets : isSet (NaturalTransformation F G)
naturalTransformationIsSets f : isSet (NaturalTransformation F G)
f a b p q i = res
where
k : (θ : Transformation F G) (xx yy : Natural F G θ) xx yy
k θ x y = let kk = naturalIsProp θ x y in {!!}
res : a b
res j = {!!} , {!!}
-- naturalTransformationIsSets σa σb p q
-- where
-- -- In Andrea's proof `lemSig` he proves something very similiar to
-- -- what I'm doing here, just for `Cubical.FromPathPrelude.Σ` rather
-- -- than `Σ`. In that proof, he just needs *one* proof that the first
-- -- components are equal - hence the arbitrary usage of `p` here.
-- secretSauce : proj₁ σa ≡ proj₁ σb
-- secretSauce i = proj₁ (p i)
-- lemSig : σa ≡ σb
-- lemSig i = (secretSauce i) , (UIP.lemPropF naturalIsProp secretSauce) {proj₂ σa} {proj₂ σb} i
-- res : p ≡ q
-- res = {!!}
naturalTransformationIsSets (θ , θNat) (η , ηNat) p q i j
= θ-η
-- `i or `j - `p'` or `q'`?
, refl {x = t} i
, {!!} -- UIP.lemPropF {B = Natural F G} (λ x → {!!}) {(θ , θNat)} {(η , ηNat)} {!!} i
-- naturalIsSet i (λ i → {!!} i) {!!} {!!} i j
-- naturalIsSet {!p''!} {!p''!} {!!} i j
-- λ f k → 𝔻.arrowIsSet (λ l → proj₂ (p l) f k) (λ l → proj₂ (p l) f k) {!!} {!!}