[WIP] natural transformations are sets
This commit is contained in:
parent
7d4aae4f49
commit
ad84b15da5
|
@ -6,6 +6,7 @@ open import Cubical
|
|||
open import Function
|
||||
open import Data.Product
|
||||
import Cubical.GradLemma
|
||||
module UIP = Cubical.GradLemma
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
|
@ -117,11 +118,29 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
lem : (λ _ → Natural F G θ) [ (λ f → θNat f) ≡ (λ f → θNat' f) ]
|
||||
lem = λ i f → 𝔻.arrowIsSet _ _ (θNat f) (θNat' f) i
|
||||
|
||||
naturalTransformationIsSets : isSet (NaturalTransformation F G)
|
||||
naturalTransformationIsSets f : isSet (NaturalTransformation F G)
|
||||
f a b p q i = res
|
||||
where
|
||||
k : (θ : Transformation F G) → (xx yy : Natural F G θ) → xx ≡ yy
|
||||
k θ x y = let kk = naturalIsProp θ x y in {!!}
|
||||
res : a ≡ b
|
||||
res j = {!!} , {!!}
|
||||
-- naturalTransformationIsSets σa σb p q
|
||||
-- where
|
||||
-- -- In Andrea's proof `lemSig` he proves something very similiar to
|
||||
-- -- what I'm doing here, just for `Cubical.FromPathPrelude.Σ` rather
|
||||
-- -- than `Σ`. In that proof, he just needs *one* proof that the first
|
||||
-- -- components are equal - hence the arbitrary usage of `p` here.
|
||||
-- secretSauce : proj₁ σa ≡ proj₁ σb
|
||||
-- secretSauce i = proj₁ (p i)
|
||||
-- lemSig : σa ≡ σb
|
||||
-- lemSig i = (secretSauce i) , (UIP.lemPropF naturalIsProp secretSauce) {proj₂ σa} {proj₂ σb} i
|
||||
-- res : p ≡ q
|
||||
-- res = {!!}
|
||||
naturalTransformationIsSets (θ , θNat) (η , ηNat) p q i j
|
||||
= θ-η
|
||||
-- `i or `j - `p'` or `q'`?
|
||||
, refl {x = t} i
|
||||
, {!!} -- UIP.lemPropF {B = Natural F G} (λ x → {!!}) {(θ , θNat)} {(η , ηNat)} {!!} i
|
||||
-- naturalIsSet i (λ i → {!!} i) {!!} {!!} i j
|
||||
-- naturalIsSet {!p''!} {!p''!} {!!} i j
|
||||
-- λ f k → 𝔻.arrowIsSet (λ l → proj₂ (p l) f k) (λ l → proj₂ (p l) f k) {!!} {!!}
|
||||
|
|
Loading…
Reference in a new issue