Restructure in free monad
This commit is contained in:
parent
66cb5b363d
commit
b03bfb0c77
|
@ -2,61 +2,77 @@
|
|||
module Cat.Categories.Free where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical hiding (Path ; isSet ; empty)
|
||||
open import Relation.Binary
|
||||
|
||||
open import Cubical hiding (Path ; empty)
|
||||
open import Data.Product
|
||||
|
||||
open import Cat.Category
|
||||
|
||||
data Path {ℓ ℓ' : Level} {A : Set ℓ} (R : A → A → Set ℓ') : (a b : A) → Set (ℓ ⊔ ℓ') where
|
||||
empty : {a : A} → Path R a a
|
||||
cons : {a b c : A} → R b c → Path R a b → Path R a c
|
||||
module _ {ℓ : Level} {A : Set ℓ} {ℓr : Level} where
|
||||
data Path (R : Rel A ℓr) : (a b : A) → Set (ℓ ⊔ ℓr) where
|
||||
empty : {a : A} → Path R a a
|
||||
cons : {a b c : A} → R b c → Path R a b → Path R a c
|
||||
|
||||
concatenate _++_ : ∀ {ℓ ℓ'} {A : Set ℓ} {a b c : A} {R : A → A → Set ℓ'} → Path R b c → Path R a b → Path R a c
|
||||
concatenate empty p = p
|
||||
concatenate (cons x q) p = cons x (concatenate q p)
|
||||
_++_ = concatenate
|
||||
module _ {R : Rel A ℓr} where
|
||||
concatenate : {a b c : A} → Path R b c → Path R a b → Path R a c
|
||||
concatenate empty p = p
|
||||
concatenate (cons x q) p = cons x (concatenate q p)
|
||||
_++_ : {a b c : A} → Path R b c → Path R a b → Path R a c
|
||||
a ++ b = concatenate a b
|
||||
|
||||
singleton : ∀ {ℓ} {𝓤 : Set ℓ} {ℓr} {R : 𝓤 → 𝓤 → Set ℓr} {A B : 𝓤} → R A B → Path R A B
|
||||
singleton f = cons f empty
|
||||
singleton : {a b : A} → R a b → Path R a b
|
||||
singleton f = cons f empty
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
open Category ℂ
|
||||
|
||||
p-isAssociative : {A B C D : Object} {r : Path Arrow A B} {q : Path Arrow B C} {p : Path Arrow C D}
|
||||
RawFree : RawCategory ℓa (ℓa ⊔ ℓb)
|
||||
RawCategory.Object RawFree = ℂ.Object
|
||||
RawCategory.Arrow RawFree = Path ℂ.Arrow
|
||||
RawCategory.𝟙 RawFree = empty
|
||||
RawCategory._∘_ RawFree = concatenate
|
||||
|
||||
open RawCategory RawFree
|
||||
open Univalence RawFree
|
||||
|
||||
|
||||
isAssociative : {A B C D : ℂ.Object} {r : Path ℂ.Arrow A B} {q : Path ℂ.Arrow B C} {p : Path ℂ.Arrow C D}
|
||||
→ p ++ (q ++ r) ≡ (p ++ q) ++ r
|
||||
p-isAssociative {r = r} {q} {empty} = refl
|
||||
p-isAssociative {A} {B} {C} {D} {r = r} {q} {cons x p} = begin
|
||||
isAssociative {r = r} {q} {empty} = refl
|
||||
isAssociative {A} {B} {C} {D} {r = r} {q} {cons x p} = begin
|
||||
cons x p ++ (q ++ r) ≡⟨ cong (cons x) lem ⟩
|
||||
cons x ((p ++ q) ++ r) ≡⟨⟩
|
||||
(cons x p ++ q) ++ r ∎
|
||||
where
|
||||
lem : p ++ (q ++ r) ≡ ((p ++ q) ++ r)
|
||||
lem = p-isAssociative {r = r} {q} {p}
|
||||
lem : p ++ (q ++ r) ≡ ((p ++ q) ++ r)
|
||||
lem = isAssociative {r = r} {q} {p}
|
||||
|
||||
ident-r : ∀ {A} {B} {p : Path Arrow A B} → concatenate p empty ≡ p
|
||||
ident-r : ∀ {A} {B} {p : Path ℂ.Arrow A B} → concatenate p empty ≡ p
|
||||
ident-r {p = empty} = refl
|
||||
ident-r {p = cons x p} = cong (cons x) ident-r
|
||||
|
||||
ident-l : ∀ {A} {B} {p : Path Arrow A B} → concatenate empty p ≡ p
|
||||
ident-l : ∀ {A} {B} {p : Path ℂ.Arrow A B} → concatenate empty p ≡ p
|
||||
ident-l = refl
|
||||
|
||||
module _ {A B : Object} where
|
||||
isSet : Cubical.isSet (Path Arrow A B)
|
||||
isSet a b p q = {!!}
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity = ident-r , ident-l
|
||||
|
||||
RawFree : RawCategory ℓ (ℓ ⊔ ℓ')
|
||||
RawFree = record
|
||||
{ Object = Object
|
||||
; Arrow = Path Arrow
|
||||
; 𝟙 = empty
|
||||
; _∘_ = concatenate
|
||||
}
|
||||
RawIsCategoryFree : IsCategory RawFree
|
||||
RawIsCategoryFree = record
|
||||
{ isAssociative = λ { {f = f} {g} {h} → p-isAssociative {r = f} {g} {h}}
|
||||
; isIdentity = ident-r , ident-l
|
||||
; arrowsAreSets = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
module _ {A B : ℂ.Object} where
|
||||
arrowsAreSets : Cubical.isSet (Path ℂ.Arrow A B)
|
||||
arrowsAreSets a b p q = {!!}
|
||||
|
||||
eqv : isEquiv (A ≡ B) (A ≅ B) (id-to-iso isIdentity A B)
|
||||
eqv = {!!}
|
||||
univalent : Univalent isIdentity
|
||||
univalent = eqv
|
||||
|
||||
isCategory : IsCategory RawFree
|
||||
IsCategory.isAssociative isCategory {f = f} {g} {h} = isAssociative {r = f} {g} {h}
|
||||
IsCategory.isIdentity isCategory = isIdentity
|
||||
IsCategory.arrowsAreSets isCategory = arrowsAreSets
|
||||
IsCategory.univalent isCategory = univalent
|
||||
|
||||
Free : Category _ _
|
||||
Free = record { raw = RawFree ; isCategory = isCategory }
|
||||
|
|
|
@ -10,6 +10,7 @@ open import Function using (_∘_)
|
|||
open import Cubical hiding (_≃_)
|
||||
open import Cubical.Univalence using (univalence ; con ; _≃_ ; idtoeqv ; ua)
|
||||
open import Cubical.GradLemma
|
||||
open import Cubical.NType.Properties
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
|
@ -59,8 +60,7 @@ module _ {ℓ : Level} {A B : Set ℓ} {a : A} where
|
|||
|
||||
module _ (ℓ : Level) where
|
||||
private
|
||||
open import Cubical.NType.Properties
|
||||
open import Cubical.Universe
|
||||
open import Cubical.Universe using (hSet) public
|
||||
|
||||
SetsRaw : RawCategory (lsuc ℓ) ℓ
|
||||
RawCategory.Object SetsRaw = hSet {ℓ}
|
||||
|
|
|
@ -19,7 +19,7 @@ module _ (ℓa ℓb : Level) where
|
|||
--
|
||||
-- Since it doesn't we'll make the following (definitionally equivalent) ad-hoc definition.
|
||||
_×_ : ∀ {ℓa ℓb} → Category ℓa ℓb → Category ℓa ℓb → Category ℓa ℓb
|
||||
ℂ × 𝔻 = Cat.CatProduct.obj ℂ 𝔻
|
||||
ℂ × 𝔻 = Cat.CatProduct.object ℂ 𝔻
|
||||
|
||||
record RawMonoidalCategory : Set ℓ where
|
||||
field
|
||||
|
|
Loading…
Reference in a new issue