Use TDNR
This commit is contained in:
parent
ea3e14af96
commit
b158b1d420
|
@ -22,25 +22,24 @@ record Functor {ℓc ℓc' ℓd ℓd'} (C : Category ℓc ℓc') (D : Category
|
||||||
→ func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a
|
→ func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : Functor A B) where
|
module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : Functor A B) where
|
||||||
|
open Functor
|
||||||
|
open Category
|
||||||
private
|
private
|
||||||
open module F = Functor F
|
F* = F .func*
|
||||||
open module G = Functor G
|
F→ = F .func→
|
||||||
open module A = Category A
|
G* = G .func*
|
||||||
open module B = Category B
|
G→ = G .func→
|
||||||
open module C = Category C
|
_A⊕_ = A ._⊕_
|
||||||
|
_B⊕_ = B ._⊕_
|
||||||
|
_C⊕_ = C ._⊕_
|
||||||
|
module _ {a0 a1 a2 : A .Object} {α0 : A .Arrow a0 a1} {α1 : A .Arrow a1 a2} where
|
||||||
|
|
||||||
F* = F.func*
|
dist : (F→ ∘ G→) (α1 A⊕ α0) ≡ (F→ ∘ G→) α1 C⊕ (F→ ∘ G→) α0
|
||||||
F→ = F.func→
|
|
||||||
G* = G.func*
|
|
||||||
G→ = G.func→
|
|
||||||
module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where
|
|
||||||
|
|
||||||
dist : (F→ ∘ G→) (α1 A.⊕ α0) ≡ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0
|
|
||||||
dist = begin
|
dist = begin
|
||||||
(F→ ∘ G→) (α1 A.⊕ α0) ≡⟨ refl ⟩
|
(F→ ∘ G→) (α1 A⊕ α0) ≡⟨ refl ⟩
|
||||||
F→ (G→ (α1 A.⊕ α0)) ≡⟨ cong F→ G.distrib ⟩
|
F→ (G→ (α1 A⊕ α0)) ≡⟨ cong F→ (G .distrib)⟩
|
||||||
F→ ((G→ α1) B.⊕ (G→ α0)) ≡⟨ F.distrib ⟩
|
F→ ((G→ α1) B⊕ (G→ α0)) ≡⟨ F .distrib ⟩
|
||||||
(F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 ∎
|
(F→ ∘ G→) α1 C⊕ (F→ ∘ G→) α0 ∎
|
||||||
|
|
||||||
functor-comp : Functor A C
|
functor-comp : Functor A C
|
||||||
functor-comp =
|
functor-comp =
|
||||||
|
@ -48,10 +47,10 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
||||||
{ func* = F* ∘ G*
|
{ func* = F* ∘ G*
|
||||||
; func→ = F→ ∘ G→
|
; func→ = F→ ∘ G→
|
||||||
; ident = begin
|
; ident = begin
|
||||||
(F→ ∘ G→) (A.𝟙) ≡⟨ refl ⟩
|
(F→ ∘ G→) (A .𝟙) ≡⟨ refl ⟩
|
||||||
F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident ⟩
|
F→ (G→ (A .𝟙)) ≡⟨ cong F→ (G .ident)⟩
|
||||||
F→ (B.𝟙) ≡⟨ F.ident ⟩
|
F→ (B .𝟙) ≡⟨ F .ident ⟩
|
||||||
C.𝟙 ∎
|
C .𝟙 ∎
|
||||||
; distrib = dist
|
; distrib = dist
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue