Cleanup in nattrans
This commit is contained in:
parent
ddd5f17c05
commit
b26ea18257
|
@ -34,7 +34,11 @@ open import Cat.Wishlist
|
||||||
|
|
||||||
module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
||||||
(ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where
|
(ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where
|
||||||
|
|
||||||
open Category using (Object ; 𝟙)
|
open Category using (Object ; 𝟙)
|
||||||
|
private
|
||||||
|
module ℂ = Category ℂ
|
||||||
|
module 𝔻 = Category 𝔻
|
||||||
|
|
||||||
module _ (F G : Functor ℂ 𝔻) where
|
module _ (F G : Functor ℂ 𝔻) where
|
||||||
private
|
private
|
||||||
|
@ -74,7 +78,6 @@ module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
||||||
where
|
where
|
||||||
module F = Functor F
|
module F = Functor F
|
||||||
F→ = F.func→
|
F→ = F.func→
|
||||||
module 𝔻 = Category 𝔻
|
|
||||||
|
|
||||||
identity : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
identity : (F : Functor ℂ 𝔻) → NaturalTransformation F F
|
||||||
identity F = identityTrans F , identityNatural F
|
identity F = identityTrans F , identityNatural F
|
||||||
|
@ -91,21 +94,15 @@ module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
||||||
proj₁ NT[ (θ , _) ∘ (η , _) ] = T[ θ ∘ η ]
|
proj₁ NT[ (θ , _) ∘ (η , _) ] = T[ θ ∘ η ]
|
||||||
proj₂ NT[ (θ , θNat) ∘ (η , ηNat) ] {A} {B} f = begin
|
proj₂ NT[ (θ , θNat) ∘ (η , ηNat) ] {A} {B} f = begin
|
||||||
𝔻 [ T[ θ ∘ η ] B ∘ F.func→ f ] ≡⟨⟩
|
𝔻 [ T[ θ ∘ η ] B ∘ F.func→ f ] ≡⟨⟩
|
||||||
𝔻 [ 𝔻 [ θ B ∘ η B ] ∘ F.func→ f ] ≡⟨ sym isAssociative ⟩
|
𝔻 [ 𝔻 [ θ B ∘ η B ] ∘ F.func→ f ] ≡⟨ sym 𝔻.isAssociative ⟩
|
||||||
𝔻 [ θ B ∘ 𝔻 [ η B ∘ F.func→ f ] ] ≡⟨ cong (λ φ → 𝔻 [ θ B ∘ φ ]) (ηNat f) ⟩
|
𝔻 [ θ B ∘ 𝔻 [ η B ∘ F.func→ f ] ] ≡⟨ cong (λ φ → 𝔻 [ θ B ∘ φ ]) (ηNat f) ⟩
|
||||||
𝔻 [ θ B ∘ 𝔻 [ G.func→ f ∘ η A ] ] ≡⟨ isAssociative ⟩
|
𝔻 [ θ B ∘ 𝔻 [ G.func→ f ∘ η A ] ] ≡⟨ 𝔻.isAssociative ⟩
|
||||||
𝔻 [ 𝔻 [ θ B ∘ G.func→ f ] ∘ η A ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ η A ]) (θNat f) ⟩
|
𝔻 [ 𝔻 [ θ B ∘ G.func→ f ] ∘ η A ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ η A ]) (θNat f) ⟩
|
||||||
𝔻 [ 𝔻 [ H.func→ f ∘ θ A ] ∘ η A ] ≡⟨ sym isAssociative ⟩
|
𝔻 [ 𝔻 [ H.func→ f ∘ θ A ] ∘ η A ] ≡⟨ sym 𝔻.isAssociative ⟩
|
||||||
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩
|
||||||
𝔻 [ H.func→ f ∘ T[ θ ∘ η ] A ] ∎
|
𝔻 [ H.func→ f ∘ T[ θ ∘ η ] A ] ∎
|
||||||
where
|
|
||||||
open Category 𝔻
|
|
||||||
|
|
||||||
module _ {F G : Functor ℂ 𝔻} where
|
module _ {F G : Functor ℂ 𝔻} where
|
||||||
private
|
|
||||||
open Category using (Object ; 𝟙)
|
|
||||||
module 𝔻 = Category 𝔻
|
|
||||||
|
|
||||||
transformationIsSet : isSet (Transformation F G)
|
transformationIsSet : isSet (Transformation F G)
|
||||||
transformationIsSet _ _ p q i j C = 𝔻.arrowsAreSets _ _ (λ l → p l C) (λ l → q l C) i j
|
transformationIsSet _ _ p q i j C = 𝔻.arrowsAreSets _ _ (λ l → p l C) (λ l → q l C) i j
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue