Implement category of presheaves
This commit is contained in:
parent
ce4dd83969
commit
bb379fa196
|
@ -62,9 +62,7 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
_h⊕g_ = NT[_∘_] {B} {C} {D}
|
_h⊕g_ = NT[_∘_] {B} {C} {D}
|
||||||
:isAssociative: : L ≡ R
|
:isAssociative: : L ≡ R
|
||||||
:isAssociative: = lemSig (naturalIsProp {F = A} {D})
|
:isAssociative: = lemSig (naturalIsProp {F = A} {D})
|
||||||
L R (funExt (λ x → isAssociative))
|
L R (funExt (λ x → 𝔻.isAssociative))
|
||||||
where
|
|
||||||
open Category 𝔻
|
|
||||||
|
|
||||||
private
|
private
|
||||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||||
|
@ -107,14 +105,22 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
Category.raw Fun = RawFun
|
Category.raw Fun = RawFun
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
|
private
|
||||||
open import Cat.Categories.Sets
|
open import Cat.Categories.Sets
|
||||||
open NaturalTransformation (opposite ℂ) (𝓢𝓮𝓽 ℓ')
|
open NaturalTransformation (opposite ℂ) (𝓢𝓮𝓽 ℓ')
|
||||||
|
|
||||||
-- Restrict the functors to Presheafs.
|
-- Restrict the functors to Presheafs.
|
||||||
RawPresh : RawCategory (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
rawPresh : RawCategory (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||||
RawPresh = record
|
rawPresh = record
|
||||||
{ Object = Presheaf ℂ
|
{ Object = Presheaf ℂ
|
||||||
; Arrow = NaturalTransformation
|
; Arrow = NaturalTransformation
|
||||||
; 𝟙 = λ {F} → identity F
|
; 𝟙 = λ {F} → identity F
|
||||||
; _∘_ = λ {F G H} → NT[_∘_] {F = F} {G = G} {H = H}
|
; _∘_ = λ {F G H} → NT[_∘_] {F = F} {G = G} {H = H}
|
||||||
}
|
}
|
||||||
|
instance
|
||||||
|
isCategory : IsCategory rawPresh
|
||||||
|
isCategory = Fun.:isCategory: _ _
|
||||||
|
|
||||||
|
Presh : Category (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||||
|
Category.raw Presh = rawPresh
|
||||||
|
Category.isCategory Presh = isCategory
|
||||||
|
|
Loading…
Reference in a new issue