Merge branch 'dev'

This commit is contained in:
Frederik Hanghøj Iversen 2018-01-21 19:24:13 +01:00
commit be4949180b
12 changed files with 380 additions and 220 deletions

2
Makefile Normal file
View file

@ -0,0 +1,2 @@
build: src/**.agda
agda src/Cat.agda

12
src/Cat.agda Normal file
View file

@ -0,0 +1,12 @@
module Cat where
import Cat.Categories.Sets
import Cat.Categories.Cat
import Cat.Categories.Rel
import Cat.Category.Pathy
import Cat.Category.Bij
import Cat.Category.Free
import Cat.Category.Properties
import Cat.Category
import Cat.Cubical
import Cat.Functor

View file

@ -1,55 +1,174 @@
{-# OPTIONS --cubical #-} {-# OPTIONS --cubical --allow-unsolved-metas #-}
module Category.Categories.Cat where module Cat.Categories.Cat where
open import Agda.Primitive open import Agda.Primitive
open import Cubical open import Cubical
open import Function open import Function
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
open import Category open import Cat.Category
open import Cat.Functor
-- Tip from Andrea:
-- Use co-patterns - they help with showing more understandable types in goals.
lift-eq : {} {A B : Set } {a a' : A} {b b' : B} a a' b b' (a , b) (a' , b')
fst (lift-eq a b i) = a i
snd (lift-eq a b i) = b i
eqpair : {a b} {A : Set a} {B : Set b} {a a' : A} {b b' : B}
a a' b b' (a , b) (a' , b')
eqpair eqa eqb i = eqa i , eqb i
open Functor
open Category
module _ { ' : Level} {A B : Category '} where
lift-eq-functors : {f g : Functor A B}
(eq* : f .func* g .func*)
(eq→ : PathP (λ i {x y} A .Arrow x y B .Arrow (eq* i x) (eq* i y))
(f .func→) (g .func→))
-- → (eq→ : Functor.func→ f ≡ {!!}) -- Functor.func→ g)
-- Use PathP
-- directly to show heterogeneous equalities by using previous
-- equalities (i.e. continuous paths) to create new continuous paths.
(eqI : PathP (λ i {c : A .Object} eq→ i (A .𝟙 {c}) B .𝟙 {eq* i c})
(ident f) (ident g))
(eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
eq→ i (A ._⊕_ a' a) B ._⊕_ (eq→ i a') (eq→ i a))
(distrib f) (distrib g))
f g
lift-eq-functors eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i }
-- The category of categories -- The category of categories
module _ { ' : Level} where module _ { ' : Level} where
private private
_⊛_ = functor-comp module _ {A B C D : Category '} {f : Functor A B} {g : Functor B C} {h : Functor C D} where
module _ {A B C D : Category {} {'}} {f : Functor A B} {g : Functor B C} {h : Functor C D} where eq* : func* (h ∘f (g ∘f f)) func* ((h ∘f g) ∘f f)
assc : h (g f) (h g) f eq* = refl
assc = {!!} eq→ : PathP
(λ i {x y : A .Object} A .Arrow x y D .Arrow (eq* i x) (eq* i y))
(func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f))
eq→ = refl
id-l = (h ∘f (g ∘f f)) .ident -- = func→ (h ∘f (g ∘f f)) (𝟙 A) ≡ 𝟙 D
id-r = ((h ∘f g) ∘f f) .ident -- = func→ ((h ∘f g) ∘f f) (𝟙 A) ≡ 𝟙 D
postulate eqI : PathP
(λ i {c : A .Object} eq→ i (A .𝟙 {c}) D .𝟙 {eq* i c})
(ident ((h ∘f (g ∘f f))))
(ident ((h ∘f g) ∘f f))
postulate eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
eq→ i (A ._⊕_ a' a) D ._⊕_ (eq→ i a') (eq→ i a))
(distrib (h ∘f (g ∘f f))) (distrib ((h ∘f g) ∘f f))
-- eqD = {!!}
module _ {A B : Category {} {'}} where assc : h ∘f (g ∘f f) (h ∘f g) ∘f f
lift-eq : (f g : Functor A B) assc = lift-eq-functors eq* eq→ eqI eqD
(eq* : Functor.func* f Functor.func* g)
-- TODO: Must transport here using the equality from above.
-- Reason:
-- func→ : Arrow A dom cod → Arrow B (func* dom) (func* cod)
-- func→₁ : Arrow A dom cod → Arrow B (func*₁ dom) (func*₁ cod)
-- In other words, func→ and func→₁ does not have the same type.
-- → Functor.func→ f ≡ Functor.func→ g
-- → Functor.ident f ≡ Functor.ident g
-- → Functor.distrib f ≡ Functor.distrib g
f g
lift-eq
(functor func* func→ idnt distrib)
(functor func*₁ func→₁ idnt₁ distrib₁)
eq-func* = {!!}
module _ {A B : Category {} {'}} {f : Functor A B} where module _ {A B : Category '} {f : Functor A B} where
idHere = identity {} {'} {A} lem : (func* f) (func* (identity {C = A})) func* f
lem : (Functor.func* f) (Functor.func* idHere) Functor.func* f
lem = refl lem = refl
ident-r : f identity f -- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f
ident-r = lift-eq (f identity) f refl lemmm : PathP
ident-l : identity f f (λ i
ident-l = {!!} {x y : Object A} Arrow A x y Arrow B (func* f x) (func* f y))
(func→ (f ∘f identity)) (func→ f)
lemmm = refl
postulate lemz : PathP (λ i {c : A .Object} PathP (λ _ Arrow B (func* f c) (func* f c)) (func→ f (A .𝟙)) (B .𝟙))
(ident (f ∘f identity)) (ident f)
-- lemz = {!!}
postulate ident-r : f ∘f identity f
-- ident-r = lift-eq-functors lem lemmm {!lemz!} {!!}
postulate ident-l : identity ∘f f f
-- ident-l = lift-eq-functors lem lemmm {!refl!} {!!}
CatCat : Category {lsuc ( ')} { '} Cat : Category (lsuc ( ')) ( ')
CatCat = Cat =
record record
{ Object = Category {} {'} { Object = Category '
; Arrow = Functor ; Arrow = Functor
; 𝟙 = identity ; 𝟙 = identity
; _⊕_ = functor-comp ; _⊕_ = _∘f_
; assoc = {!!} -- What gives here? Why can I not name the variables directly?
; isCategory = record
{ assoc = λ {_ _ _ _ f g h} assc {f = f} {g = g} {h = h}
; ident = ident-r , ident-l ; ident = ident-r , ident-l
} }
}
module _ { : Level} (C D : Category ) where
private
:Object: = C .Object × D .Object
:Arrow: : :Object: :Object: Set
:Arrow: (c , d) (c' , d') = Arrow C c c' × Arrow D d d'
:𝟙: : {o : :Object:} :Arrow: o o
:𝟙: = C .𝟙 , D .𝟙
_:⊕:_ :
{a b c : :Object:}
:Arrow: b c
:Arrow: a b
:Arrow: a c
_:⊕:_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) (C ._⊕_) bc∈C ab∈C , D ._⊕_ bc∈D ab∈D}
instance
:isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_
:isCategory: = record
{ assoc = eqpair C.assoc D.assoc
; ident
= eqpair (fst C.ident) (fst D.ident)
, eqpair (snd C.ident) (snd D.ident)
}
where
open module C = IsCategory (C .isCategory)
open module D = IsCategory (D .isCategory)
:product: : Category
:product: = record
{ Object = :Object:
; Arrow = :Arrow:
; 𝟙 = :𝟙:
; _⊕_ = _:⊕:_
}
proj₁ : Arrow Cat :product: C
proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl }
proj₂ : Arrow Cat :product: D
proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl }
module _ {X : Object (Cat {} {})} (x₁ : Arrow Cat X C) (x₂ : Arrow Cat X D) where
open Functor
-- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D)
-- ident' {c = c} = lift-eq (ident x₁) (ident x₂)
x : Functor X :product:
x = record
{ func* = λ x (func* x₁) x , (func* x₂) x
; func→ = λ x func→ x₁ x , func→ x₂ x
; ident = lift-eq (ident x₁) (ident x₂)
; distrib = lift-eq (distrib x₁) (distrib x₂)
}
-- Need to "lift equality of functors"
-- If I want to do this like I do it for pairs it's gonna be a pain.
postulate isUniqL : (Cat proj₁) x x₁
-- isUniqL = lift-eq-functors refl refl {!!} {!!}
postulate isUniqR : (Cat proj₂) x x₂
-- isUniqR = lift-eq-functors refl refl {!!} {!!}
isUniq : (Cat proj₁) x x₁ × (Cat proj₂) x x₂
isUniq = isUniqL , isUniqR
uniq : ∃![ x ] ((Cat proj₁) x x₁ × (Cat proj₂) x x₂)
uniq = x , isUniq
instance
isProduct : IsProduct Cat proj₁ proj₂
isProduct = uniq
product : Product { = Cat} C D
product = record
{ obj = :product:
; proj₁ = proj₁
; proj₂ = proj₂
}

View file

@ -154,12 +154,11 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset
(Σ[ b B ] (a , b) S × (Σ[ c C ] (b , c) R × (c , d) Q)) (Σ[ b B ] (a , b) S × (Σ[ c C ] (b , c) R × (c , d) Q))
is-assoc = equivToPath equi is-assoc = equivToPath equi
Rel : Category Rel : Category (lsuc lzero) (lsuc lzero)
Rel = record Rel = record
{ Object = Set { Object = Set
; Arrow = λ S R Subset (S × R) ; Arrow = λ S R Subset (S × R)
; 𝟙 = λ {S} Diag S ; 𝟙 = λ {S} Diag S
; _⊕_ = λ {A B C} S R λ {( a , c ) Σ[ b B ] ( (a , b) R × (b , c) S )} ; _⊕_ = λ {A B C} S R λ {( a , c ) Σ[ b B ] ( (a , b) R × (b , c) S )}
; assoc = funExt is-assoc ; isCategory = record { assoc = funExt is-assoc ; ident = funExt ident-l , funExt ident-r }
; ident = funExt ident-l , funExt ident-r
} }

View file

@ -9,44 +9,45 @@ open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
open import Cat.Category open import Cat.Category
open import Cat.Functor open import Cat.Functor
open Category
-- Sets are built-in to Agda. The set of all small sets is called Set. Sets : { : Level} Category (lsuc )
Fun : { : Level} ( T U : Set ) Set
Fun T U = T U
Sets : { : Level} Category {lsuc } {}
Sets {} = record Sets {} = record
{ Object = Set { Object = Set
; Arrow = λ T U Fun {} T U ; Arrow = λ T U T U
; 𝟙 = λ x x ; 𝟙 = id
; _⊕_ = λ g f x g ( f x ) ; _⊕_ = _∘_
; assoc = refl ; isCategory = record { assoc = refl ; ident = funExt (λ _ refl) , funExt (λ _ refl) }
; ident = funExt (λ x refl) , funExt (λ x refl)
} }
where
open import Function
Representable : { ' : Level} ( : Category {} {'}) Set ( lsuc ') -- Covariant Presheaf
Representable : { ' : Level} ( : Category ') Set ( lsuc ')
Representable {' = '} = Functor (Sets {'}) Representable {' = '} = Functor (Sets {'})
representable : { ' : Level} { : Category {} {'}} Category.Object Representable -- The "co-yoneda" embedding.
representable : { '} { : Category '} Category.Object Representable
representable { = } A = record representable { = } A = record
{ func* = λ B .Arrow A B { func* = λ B .Arrow A B
; func→ = λ f g f .⊕ g ; func→ = ._⊕_
; ident = funExt λ _ snd .ident ; ident = funExt λ _ snd ident
; distrib = funExt λ x sym .assoc ; distrib = funExt λ x sym assoc
} }
where where
open module = Category open IsCategory ( .isCategory)
Presheaf : { ' : Level} ( : Category {} {'}) Set ( lsuc ') -- Contravariant Presheaf
Presheaf : { '} ( : Category ') Set ( lsuc ')
Presheaf {' = '} = Functor (Opposite ) (Sets {'}) Presheaf {' = '} = Functor (Opposite ) (Sets {'})
presheaf : { ' : Level} { : Category {} {'}} Category.Object (Opposite ) Presheaf -- Alternate name: `yoneda`
presheaf : { ' : Level} { : Category '} Category.Object (Opposite ) Presheaf
presheaf { = } B = record presheaf { = } B = record
{ func* = λ A .Arrow A B { func* = λ A .Arrow A B
; func→ = λ f g g .⊕ f ; func→ = λ f g ._⊕_ g f
; ident = funExt λ x fst .ident ; ident = funExt λ x fst ident
; distrib = funExt λ x .assoc ; distrib = funExt λ x assoc
} }
where where
open module = Category open IsCategory ( .isCategory)

View file

@ -4,139 +4,119 @@ module Cat.Category where
open import Agda.Primitive open import Agda.Primitive
open import Data.Unit.Base open import Data.Unit.Base
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Data.Product renaming
( proj₁ to fst
; proj₂ to snd
; ∃! to ∃!≈
)
open import Data.Empty open import Data.Empty
open import Function open import Function
open import Cubical open import Cubical
postulate undefined : { : Level} {A : Set } A ∃! : {a b} {A : Set a}
(A Set b) Set (a b)
∃! = ∃!≈ _≡_
record Category { '} : Set (lsuc (' )) where ∃!-syntax : {a b} {A : Set a} (A Set b) Set (a b)
constructor category ∃!-syntax =
syntax ∃!-syntax (λ x B) = ∃![ x ] B
record IsCategory { ' : Level}
(Object : Set )
(Arrow : Object Object Set ')
(𝟙 : {o : Object} Arrow o o)
(_⊕_ : { a b c : Object } Arrow b c Arrow a b Arrow a c)
: Set (lsuc (' )) where
field
assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
h (g f) (h g) f
ident : {A B : Object} {f : Arrow A B}
f 𝟙 f × 𝟙 f f
-- open IsCategory public
record Category ( ' : Level) : Set (lsuc (' )) where
-- adding no-eta-equality can speed up type-checking.
no-eta-equality
field field
Object : Set Object : Set
Arrow : Object Object Set ' Arrow : Object Object Set '
𝟙 : {o : Object} Arrow o o 𝟙 : {o : Object} Arrow o o
_⊕_ : { a b c : Object } Arrow b c Arrow a b Arrow a c _⊕_ : { a b c : Object } Arrow b c Arrow a b Arrow a c
assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } {{isCategory}} : IsCategory Object Arrow 𝟙 _⊕_
h (g f) (h g) f
ident : { A B : Object } { f : Arrow A B }
f 𝟙 f × 𝟙 f f
infixl 45 _⊕_ infixl 45 _⊕_
domain : { a b : Object } Arrow a b Object domain : { a b : Object } Arrow a b Object
domain {a = a} _ = a domain {a = a} _ = a
codomain : { a b : Object } Arrow a b Object codomain : { a b : Object } Arrow a b Object
codomain {b = b} _ = b codomain {b = b} _ = b
open Category public open Category
module _ { ' : Level} { : Category {} {'}} { A B : Object } where module _ { ' : Level} { : Category '} where
private module _ { A B : .Object } where
open module = Category Isomorphism : (f : .Arrow A B) Set '
_+_ = ._⊕_ Isomorphism f = Σ[ g .Arrow B A ] ._⊕_ g f .𝟙 × ._⊕_ f g .𝟙
Isomorphism : (f : .Arrow A B) Set ' Epimorphism : {X : .Object } (f : .Arrow A B) Set '
Isomorphism f = Σ[ g .Arrow B A ] g + f .𝟙 × f + g .𝟙 Epimorphism {X} f = ( g₀ g₁ : .Arrow B X ) ._⊕_ g₀ f ._⊕_ g₁ f g₀ g₁
Epimorphism : {X : .Object } (f : .Arrow A B) Set ' Monomorphism : {X : .Object} (f : .Arrow A B) Set '
Epimorphism {X} f = ( g₀ g₁ : .Arrow B X ) g₀ + f g₁ + f g₀ g₁ Monomorphism {X} f = ( g₀ g₁ : .Arrow X A ) ._⊕_ f g₀ ._⊕_ f g₁ g₀ g₁
Monomorphism : {X : .Object} (f : .Arrow A B) Set ' -- Isomorphism of objects
Monomorphism {X} f = ( g₀ g₁ : .Arrow X A ) f + g₀ f + g₁ g₀ g₁ _≅_ : (A B : Object ) Set '
_≅_ A B = Σ[ f .Arrow A B ] (Isomorphism f)
iso-is-epi : {X} (f : .Arrow A B) Isomorphism f Epimorphism {X = X} f module _ { ' : Level} ( : Category ') {A B obj : Object } where
-- Idea: Pre-compose with f- on both sides of the equality of eq to get IsProduct : (π₁ : Arrow obj A) (π₂ : Arrow obj B) Set ( ')
-- g₀ + f + f- ≡ g₁ + f + f- IsProduct π₁ π₂
-- which by left-inv reduces to the goal. = {X : .Object} (x₁ : .Arrow X A) (x₂ : .Arrow X B)
iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq = ∃![ x ] ( ._⊕_ π₁ x x₁ × ._⊕_ π₂ x x₂)
trans (sym (fst .ident))
( trans (cong (_+_ g₀) (sym right-inv))
( trans .assoc
( trans (cong (λ x x + f-) eq)
( trans (sym .assoc)
( trans (cong (_+_ g₁) right-inv) (fst .ident))
)
)
)
)
iso-is-mono : {X} (f : .Arrow A B ) Isomorphism f Monomorphism {X = X} f -- Tip from Andrea; Consider this style for efficiency:
-- For the next goal we do something similar: Post-compose with f- and use -- record IsProduct { ' : Level} ( : Category {} {'})
-- right-inv to get the goal. -- {A B obj : Object } (π₁ : Arrow obj A) (π₂ : Arrow obj B) : Set (') where
iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq = -- field
trans (sym (snd .ident)) -- isProduct : ∀ {X : .Object} (x₁ : .Arrow X A) (x₂ : .Arrow X B)
( trans (cong (λ x x + g₀) (sym left-inv)) -- → ∃![ x ] ( ._⊕_ π₁ x ≡ x₁ × . _⊕_ π₂ x ≡ x₂)
( trans (sym .assoc)
( trans (cong (_+_ f-) eq)
( trans .assoc
( trans (cong (λ x x + g₁) left-inv) (snd .ident)
)
)
)
)
)
iso-is-epi-mono : {X} (f : .Arrow A B ) Isomorphism f Epimorphism {X = X} f × Monomorphism {X = X} f record Product { ' : Level} { : Category '} (A B : .Object) : Set ( ') where
iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso no-eta-equality
field
obj : .Object
proj₁ : .Arrow obj A
proj₂ : .Arrow obj B
{{isProduct}} : IsProduct proj₁ proj₂
{- module _ { ' : Level} ( : Category ') where
epi-mono-is-not-iso : { '} ¬ (( : Category {} {'}) {A B X : Object } (f : Arrow A B ) Epimorphism { = } {X = X} f Monomorphism { = } {X = X} f Isomorphism { = } f) Opposite : Category '
epi-mono-is-not-iso f = Opposite =
let k = f {!!} {!!} {!!} {!!}
in {!!}
-}
-- Isomorphism of objects
_≅_ : { ' : Level } { : Category {} {'} } ( A B : Object ) Set '
_≅_ { = } A B = Σ[ f .Arrow A B ] (Isomorphism { = } f)
where
open module = Category
Product : { : Level} ( C D : Category {} {} ) Category {} {}
Product C D =
record record
{ Object = C.Object × D.Object { Object = .Object
; Arrow = λ { (c , d) (c' , d') ; Arrow = flip ( .Arrow)
let carr = C.Arrow c c' ; 𝟙 = .𝟙
darr = D.Arrow d d' ; _⊕_ = flip ( ._⊕_)
in carr × darr} ; isCategory = record { assoc = sym assoc ; ident = swap ident }
; 𝟙 = C.𝟙 , D.𝟙
; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D}
; assoc = eqpair C.assoc D.assoc
; ident =
let (Cl , Cr) = C.ident
(Dl , Dr) = D.ident
in eqpair Cl Dl , eqpair Cr Dr
} }
where where
open module C = Category C open IsCategory ( .isCategory)
open module D = Category D
-- Two pairs are equal if their components are equal.
eqpair : { : Level} { A : Set } { B : Set } { a a' : A } { b b' : B } a a' b b' (a , b) (a' , b')
eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)}))
Opposite : { '} Category {} {'} Category {} {'} -- A consequence of no-eta-equality; `Opposite-is-involution` is no longer
Opposite = -- definitional - i.e.; you must match on the fields:
record --
{ Object = .Object -- Opposite-is-involution : ∀ { '} → {C : Category {} {'}} → Opposite (Opposite C) ≡ C
; Arrow = λ A B .Arrow B A -- Object (Opposite-is-involution {C = C} i) = Object C
; 𝟙 = .𝟙 -- Arrow (Opposite-is-involution i) = {!!}
; _⊕_ = λ g f f .⊕ g -- 𝟙 (Opposite-is-involution i) = {!!}
; assoc = sym .assoc -- _⊕_ (Opposite-is-involution i) = {!!}
; ident = swap .ident -- assoc (Opposite-is-involution i) = {!!}
} -- ident (Opposite-is-involution i) = {!!}
where
open module = Category
Hom : { ' : Level} ( : Category {} {'}) (A B : Object ) Set ' Hom : { ' : Level} ( : Category ') (A B : Object ) Set '
Hom A B = Arrow A B Hom A B = Arrow A B
module _ { ' : Level} { : Category {} {'}} where module _ { ' : Level} { : Category '} where
private HomFromArrow : (A : .Object) {B B' : .Object} (g : .Arrow B B')
Obj = Object
Arr = Arrow
_+_ = _⊕_
HomFromArrow : (A : Obj) {B B' : Obj} (g : Arr B B')
Hom A B Hom A B' Hom A B Hom A B'
HomFromArrow _A g = λ f g + f HomFromArrow _A = _⊕_

View file

@ -1,6 +1,9 @@
{-# OPTIONS --cubical #-} {-# OPTIONS --cubical --allow-unsolved-metas #-}
module Cat.Category.Bij where
open import Cubical.PathPrelude hiding ( Id ) open import Cubical.PathPrelude hiding ( Id )
open import Cubical.FromStdLib
module _ {A : Set} {a : A} {P : A Set} where module _ {A : Set} {a : A} {P : A Set} where
Q : A Set Q : A Set
@ -20,7 +23,7 @@ module _ {A : Set} {a : A} {P : A → Set} where
w x = {!!} w x = {!!}
vw-bij : (a : P a) (w v) a a vw-bij : (a : P a) (w v) a a
vw-bij a = refl vw-bij a = {!!}
-- tubij a with (t ∘ u) a -- tubij a with (t ∘ u) a
-- ... | q = {!!} -- ... | q = {!!}

View file

@ -1,21 +1,20 @@
module Category.Free where module Cat.Category.Free where
open import Agda.Primitive open import Agda.Primitive
open import Cubical.PathPrelude hiding (Path) open import Cubical.PathPrelude hiding (Path)
open import Data.Product
open import Category as C open import Cat.Category as C
module _ { ' : Level} ( : Category {} {'}) where module _ { ' : Level} ( : Category ') where
private private
open module = Category open module = Category
Obj = .Object Obj = .Object
Path : ( a b : Obj ) Set postulate
Path a b = undefined Path : ( a b : Obj ) Set '
emptyPath : (o : Obj) Path o o
postulate emptyPath : (o : Obj) Path o o concatenate : {a b c : Obj} Path b c Path a b Path a c
postulate concatenate : {a b c : Obj} Path b c Path a b Path a c
private private
module _ {A B C D : Obj} {r : Path A B} {q : Path B C} {p : Path C D} where module _ {A B C D : Obj} {r : Path A B} {q : Path B C} {p : Path C D} where
@ -27,12 +26,11 @@ module _ { ' : Level} ( : Category {} {'}) where
ident-r : concatenate {A} {A} {B} p (emptyPath A) p ident-r : concatenate {A} {A} {B} p (emptyPath A) p
ident-l : concatenate {A} {B} {B} (emptyPath B) p p ident-l : concatenate {A} {B} {B} (emptyPath B) p p
Free : Category Free : Category '
Free = record Free = record
{ Object = Obj { Object = Obj
; Arrow = Path ; Arrow = Path
; 𝟙 = λ {o} emptyPath o ; 𝟙 = λ {o} emptyPath o
; _⊕_ = λ {a b c} concatenate {a} {b} {c} ; _⊕_ = λ {a b c} concatenate {a} {b} {c}
; assoc = p-assoc ; isCategory = record { assoc = p-assoc ; ident = ident-r , ident-l }
; ident = ident-r , ident-l
} }

View file

@ -1,7 +1,8 @@
{-# OPTIONS --cubical #-} {-# OPTIONS --cubical #-}
module Category.Pathy where module Cat.Category.Pathy where
open import Level
open import Cubical.PathPrelude open import Cubical.PathPrelude
{- {-

View file

@ -2,22 +2,64 @@
module Cat.Category.Properties where module Cat.Category.Properties where
open import Agda.Primitive
open import Data.Product
open import Cubical.PathPrelude
open import Cat.Category open import Cat.Category
open import Cat.Functor open import Cat.Functor
open import Cat.Categories.Sets open import Cat.Categories.Sets
module _ { ' : Level} { : Category '} { A B : .Category.Object } {X : .Category.Object} (f : .Category.Arrow A B) where
open Category
open IsCategory (isCategory)
iso-is-epi : Isomorphism { = } f Epimorphism { = } {X = X} f
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq =
begin
g₀ ≡⟨ sym (proj₁ ident)
g₀ 𝟙 ≡⟨ cong (_⊕_ g₀) (sym right-inv)
g₀ (f f-) ≡⟨ assoc
(g₀ f) f- ≡⟨ cong (λ φ φ f-) eq
(g₁ f) f- ≡⟨ sym assoc
g₁ (f f-) ≡⟨ cong (_⊕_ g₁) right-inv
g₁ 𝟙 ≡⟨ proj₁ ident
g₁
iso-is-mono : Isomorphism { = } f Monomorphism { = } {X = X} f
iso-is-mono (f- , (left-inv , right-inv)) g₀ g₁ eq =
begin
g₀ ≡⟨ sym (proj₂ ident)
𝟙 g₀ ≡⟨ cong (λ φ φ g₀) (sym left-inv)
(f- f) g₀ ≡⟨ sym assoc
f- (f g₀) ≡⟨ cong (_⊕_ f-) eq
f- (f g₁) ≡⟨ assoc
(f- f) g₁ ≡⟨ cong (λ φ φ g₁) left-inv
𝟙 g₁ ≡⟨ proj₂ ident
g₁
iso-is-epi-mono : Isomorphism { = } f Epimorphism { = } {X = X} f × Monomorphism { = } {X = X} f
iso-is-epi-mono iso = iso-is-epi iso , iso-is-mono iso
{-
epi-mono-is-not-iso : { '} ¬ (( : Category {} {'}) {A B X : Object } (f : Arrow A B ) Epimorphism { = } {X = X} f Monomorphism { = } {X = X} f Isomorphism { = } f)
epi-mono-is-not-iso f =
let k = f {!!} {!!} {!!} {!!}
in {!!}
-}
module _ {a a' b b'} where module _ {a a' b b'} where
Exponential : Category {a} {a'} Category {b} {b'} Category {{!!}} {{!!}} Exponential : Category a a' Category b b' Category {!!} {!!}
Exponential A B = record Exponential A B = record
{ Object = {!!} { Object = {!!}
; Arrow = {!!} ; Arrow = {!!}
; 𝟙 = {!!} ; 𝟙 = {!!}
; _⊕_ = {!!} ; _⊕_ = {!!}
; assoc = {!!} ; isCategory = {!!}
; ident = {!!}
} }
_⇑_ = Exponential _⇑_ = Exponential
yoneda : { '} { : Category {} {'}} Functor (Sets (Opposite )) yoneda : { '} { : Category '} Functor (Sets (Opposite ))
yoneda = {!!} yoneda = {!!}

View file

@ -1,3 +1,4 @@
{-# OPTIONS --allow-unsolved-metas #-}
module Cat.Cubical where module Cat.Cubical where
open import Agda.Primitive open import Agda.Primitive
@ -9,8 +10,13 @@ open import Data.Empty
open import Cat.Category open import Cat.Category
-- See chapter 1 for a discussion on how presheaf categories are CwF's.
-- See section 6.8 in Huber's thesis for details on how to implement the
-- categorical version of CTT
module _ { ' : Level} (Ns : Set ) where module _ { ' : Level} (Ns : Set ) where
-- Σ is the "namespace" -- Ns is the "namespace"
o = (lsuc lzero ) o = (lsuc lzero )
FiniteDecidableSubset : Set FiniteDecidableSubset : Set
@ -36,13 +42,12 @@ module _ { ' : Level} (Ns : Set ) where
Mor = Σ themap rules Mor = Σ themap rules
-- The category of names and substitutions -- The category of names and substitutions
: Category -- {o} {lsuc lzero ⊔ o} : Category -- o (lsuc lzero ⊔ o)
= record = record
-- { Object = FiniteDecidableSubset -- { Object = FiniteDecidableSubset
{ Object = Ns Bool { Object = Ns Bool
; Arrow = Mor ; Arrow = Mor
; 𝟙 = {!!} ; 𝟙 = {!!}
; _⊕_ = {!!} ; _⊕_ = {!!}
; assoc = {!!} ; isCategory = ?
; ident = {!!}
} }

View file

@ -6,7 +6,7 @@ open import Function
open import Cat.Category open import Cat.Category
record Functor {c c' d d'} (C : Category {c} {c'}) (D : Category {d} {d'}) record Functor {c c' d d'} (C : Category c c') (D : Category d d')
: Set (c c' d d') where : Set (c c' d d') where
private private
open module C = Category C open module C = Category C
@ -21,43 +21,41 @@ record Functor {c c' d d'} (C : Category {c} {c'}) (D : Catego
distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''} distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''}
func→ (a' C.⊕ a) func→ a' D.⊕ func→ a func→ (a' C.⊕ a) func→ a' D.⊕ func→ a
module _ { ' : Level} {A B C : Category {} {'}} (F : Functor B C) (G : Functor A B) where module _ { ' : Level} {A B C : Category '} (F : Functor B C) (G : Functor A B) where
open Functor
open Category
private private
open module F = Functor F F* = F .func*
open module G = Functor G F→ = F .func→
open module A = Category A G* = G .func*
open module B = Category B G→ = G .func→
open module C = Category C _A⊕_ = A ._⊕_
_B⊕_ = B ._⊕_
_C⊕_ = C ._⊕_
module _ {a0 a1 a2 : A .Object} {α0 : A .Arrow a0 a1} {α1 : A .Arrow a1 a2} where
F* = F.func* dist : (F→ G→) (α1 A⊕ α0) (F→ G→) α1 C⊕ (F→ G→) α0
F→ = F.func→
G* = G.func*
G→ = G.func→
module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where
dist : (F→ G→) (α1 A.⊕ α0) (F→ G→) α1 C.⊕ (F→ G→) α0
dist = begin dist = begin
(F→ G→) (α1 A. α0) ≡⟨ refl (F→ G→) (α1 A⊕ α0) ≡⟨ refl
F→ (G→ (α1 A. α0)) ≡⟨ cong F→ G.distrib F→ (G→ (α1 A⊕ α0)) ≡⟨ cong F→ (G .distrib)
F→ ((G→ α1) B. (G→ α0)) ≡⟨ F.distrib F→ ((G→ α1) B⊕ (G→ α0)) ≡⟨ F .distrib
(F→ G→) α1 C. (F→ G→) α0 (F→ G→) α1 C⊕ (F→ G→) α0
functor-comp : Functor A C _∘f_ : Functor A C
functor-comp = _∘f_ =
record record
{ func* = F* G* { func* = F* G*
; func→ = F→ G→ ; func→ = F→ G→
; ident = begin ; ident = begin
(F→ G→) (A.𝟙) ≡⟨ refl (F→ G→) (A .𝟙) ≡⟨ refl
F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident F→ (G→ (A .𝟙)) ≡⟨ cong F→ (G .ident)
F→ (B.𝟙) ≡⟨ F.ident F→ (B .𝟙) ≡⟨ F .ident
C.𝟙 C .𝟙
; distrib = dist ; distrib = dist
} }
-- The identity functor -- The identity functor
identity : { ' : Level} {C : Category {} {'}} Functor C C identity : { '} {C : Category '} Functor C C
-- Identity = record { F* = λ x → x ; F→ = λ x → x ; ident = refl ; distrib = refl }
identity = record identity = record
{ func* = λ x x { func* = λ x x
; func→ = λ x x ; func→ = λ x x