From bec5acdc59ca50377252399fdaa06bfaf9c287c0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Frederik=20Hangh=C3=B8j=20Iversen?= Date: Mon, 19 Feb 2018 11:25:16 +0100 Subject: [PATCH] Move proposition to wishlist --- src/Cat/Category.agda | 6 ++---- src/Cat/Wishlist.agda | 5 +++++ 2 files changed, 7 insertions(+), 4 deletions(-) diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index cee681f..1b542be 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -14,6 +14,8 @@ import Function open import Cubical open import Cubical.NType.Properties using ( propIsEquiv ) +open import Cat.Wishlist + ∃! : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃! = ∃!≈ _≡_ @@ -23,10 +25,6 @@ open import Cubical.NType.Properties using ( propIsEquiv ) syntax ∃!-syntax (λ x → B) = ∃![ x ] B --- This follows from [HoTT-book: §7.1.10] --- Andrea says the proof is in `cubical` but I can't find it. -postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A) - record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where -- adding no-eta-equality can speed up type-checking. -- ONLY IF you define your categories with copatterns though. diff --git a/src/Cat/Wishlist.agda b/src/Cat/Wishlist.agda index 2e56a27..7103b9d 100644 --- a/src/Cat/Wishlist.agda +++ b/src/Cat/Wishlist.agda @@ -1,6 +1,11 @@ module Cat.Wishlist where +open import Level open import Cubical.NType open import Data.Nat using (_≤_ ; z≤n ; s≤s) postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A + +-- This follows from [HoTT-book: §7.1.10] +-- Andrea says the proof is in `cubical` but I can't find it. +postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A)