Make IsFunctor
a seperate record
This commit is contained in:
parent
52dea06df9
commit
c87a6fb469
|
@ -21,6 +21,7 @@ eqpair : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} {a a' : A} {b b' : B}
|
|||
eqpair eqa eqb i = eqa i , eqb i
|
||||
|
||||
open Functor
|
||||
open IsFunctor
|
||||
open Category
|
||||
|
||||
-- The category of categories
|
||||
|
@ -36,11 +37,11 @@ module _ (ℓ ℓ' : Level) where
|
|||
eq→ = refl
|
||||
postulate eqI : PathP
|
||||
(λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ D .𝟙 {eq* i c})
|
||||
(ident ((h ∘f (g ∘f f))))
|
||||
(ident ((h ∘f g) ∘f f))
|
||||
((h ∘f (g ∘f f)) .isFunctor .ident)
|
||||
(((h ∘f g) ∘f f) .isFunctor .ident)
|
||||
postulate eqD : PathP (λ i → { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
|
||||
→ eq→ i (A ._⊕_ a' a) ≡ D ._⊕_ (eq→ i a') (eq→ i a))
|
||||
(distrib (h ∘f (g ∘f f))) (distrib ((h ∘f g) ∘f f))
|
||||
((h ∘f (g ∘f f)) .isFunctor .distrib) (((h ∘f g) ∘f f) .isFunctor .distrib)
|
||||
|
||||
assc : h ∘f (g ∘f f) ≡ (h ∘f g) ∘f f
|
||||
assc = Functor≡ eq* eq→ eqI eqD
|
||||
|
@ -59,12 +60,12 @@ module _ (ℓ ℓ' : Level) where
|
|||
postulate
|
||||
eqI-r : PathP (λ i → {c : ℂ .Object}
|
||||
→ PathP (λ _ → Arrow 𝔻 (func* F c) (func* F c)) (func→ F (ℂ .𝟙)) (𝔻 .𝟙))
|
||||
(ident (F ∘f identity)) (ident F)
|
||||
((F ∘f identity) .isFunctor .ident) (F .isFunctor .ident)
|
||||
eqD-r : PathP
|
||||
(λ i →
|
||||
{A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} →
|
||||
eq→ i (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (eq→ i g) (eq→ i f))
|
||||
((F ∘f identity) .distrib) (distrib F)
|
||||
((F ∘f identity) .isFunctor .distrib) (F .isFunctor .distrib)
|
||||
ident-r : F ∘f identity ≡ F
|
||||
ident-r = Functor≡ eq* eq→ eqI-r eqD-r
|
||||
module _ where
|
||||
|
@ -75,10 +76,10 @@ module _ (ℓ ℓ' : Level) where
|
|||
(λ i → {x y : Object ℂ} → ℂ .Arrow x y → 𝔻 .Arrow (eq* i x) (eq* i y))
|
||||
((identity ∘f F) .func→) (F .func→)
|
||||
eqI : PathP (λ i → ∀ {A : ℂ .Object} → eq→ i (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A})
|
||||
(ident (identity ∘f F)) (ident F)
|
||||
((identity ∘f F) .isFunctor .ident) (F .isFunctor .ident)
|
||||
eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C}
|
||||
→ eq→ i (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (eq→ i g) (eq→ i f))
|
||||
(distrib (identity ∘f F)) (distrib F)
|
||||
((identity ∘f F) .isFunctor .distrib) (F .isFunctor .distrib)
|
||||
ident-l : identity ∘f F ≡ F
|
||||
ident-l = Functor≡ eq* eq→ eqI eqD
|
||||
|
||||
|
@ -134,10 +135,10 @@ module _ {ℓ ℓ' : Level} where
|
|||
}
|
||||
|
||||
proj₁ : Arrow Catt :product: ℂ
|
||||
proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl }
|
||||
proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||
|
||||
proj₂ : Arrow Catt :product: 𝔻
|
||||
proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl }
|
||||
proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||
|
||||
module _ {X : Object Catt} (x₁ : Arrow Catt X ℂ) (x₂ : Arrow Catt X 𝔻) where
|
||||
open Functor
|
||||
|
@ -149,9 +150,14 @@ module _ {ℓ ℓ' : Level} where
|
|||
x = record
|
||||
{ func* = λ x → (func* x₁) x , (func* x₂) x
|
||||
; func→ = λ x → func→ x₁ x , func→ x₂ x
|
||||
; ident = lift-eq (ident x₁) (ident x₂)
|
||||
; distrib = lift-eq (distrib x₁) (distrib x₂)
|
||||
; isFunctor = record
|
||||
{ ident = lift-eq x₁.ident x₂.ident
|
||||
; distrib = lift-eq x₁.distrib x₂.distrib
|
||||
}
|
||||
}
|
||||
where
|
||||
open module x₁ = IsFunctor (x₁ .isFunctor)
|
||||
open module x₂ = IsFunctor (x₂ .isFunctor)
|
||||
|
||||
-- Need to "lift equality of functors"
|
||||
-- If I want to do this like I do it for pairs it's gonna be a pain.
|
||||
|
@ -260,10 +266,12 @@ module _ (ℓ : Level) where
|
|||
:func→: {c} {c} (identityNat F , ℂ .𝟙) ≡⟨⟩
|
||||
(identityTrans F C 𝔻⊕ F .func→ (ℂ .𝟙)) ≡⟨⟩
|
||||
𝔻 .𝟙 𝔻⊕ F .func→ (ℂ .𝟙) ≡⟨ proj₂ 𝔻.ident ⟩
|
||||
F .func→ (ℂ .𝟙) ≡⟨ F .ident ⟩
|
||||
F .func→ (ℂ .𝟙) ≡⟨ F.ident ⟩
|
||||
𝔻 .𝟙 ∎
|
||||
where
|
||||
open module 𝔻 = IsCategory (𝔻 .isCategory)
|
||||
open module F = IsFunctor (F .isFunctor)
|
||||
|
||||
module _ {F×A G×B H×C : Functor ℂ 𝔻 × ℂ .Object} where
|
||||
F = F×A .proj₁
|
||||
A = F×A .proj₂
|
||||
|
@ -302,7 +310,7 @@ module _ (ℓ : Level) where
|
|||
≡ (η C 𝔻⊕ G .func→ g) 𝔻⊕ (θ B 𝔻⊕ F .func→ f)
|
||||
:distrib: = begin
|
||||
(ηθ C) 𝔻⊕ F .func→ (g ℂ⊕ f) ≡⟨ ηθNat (g ℂ⊕ f) ⟩
|
||||
H .func→ (g ℂ⊕ f) 𝔻⊕ (ηθ A) ≡⟨ cong (λ φ → φ 𝔻⊕ ηθ A) (H .distrib) ⟩
|
||||
H .func→ (g ℂ⊕ f) 𝔻⊕ (ηθ A) ≡⟨ cong (λ φ → φ 𝔻⊕ ηθ A) (H.distrib) ⟩
|
||||
(H .func→ g 𝔻⊕ H .func→ f) 𝔻⊕ (ηθ A) ≡⟨ sym assoc ⟩
|
||||
H .func→ g 𝔻⊕ (H .func→ f 𝔻⊕ (ηθ A)) ≡⟨⟩
|
||||
H .func→ g 𝔻⊕ (H .func→ f 𝔻⊕ (ηθ A)) ≡⟨ cong (λ φ → H .func→ g 𝔻⊕ φ) assoc ⟩
|
||||
|
@ -314,14 +322,17 @@ module _ (ℓ : Level) where
|
|||
(η C 𝔻⊕ G .func→ g) 𝔻⊕ (θ B 𝔻⊕ F .func→ f) ∎
|
||||
where
|
||||
open IsCategory (𝔻 .isCategory)
|
||||
open module H = IsFunctor (H .isFunctor)
|
||||
|
||||
:eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻
|
||||
:eval: = record
|
||||
{ func* = :func*:
|
||||
; func→ = λ {dom} {cod} → :func→: {dom} {cod}
|
||||
; ident = λ {o} → :ident: {o}
|
||||
; isFunctor = record
|
||||
{ ident = λ {o} → :ident: {o}
|
||||
; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y}
|
||||
}
|
||||
}
|
||||
|
||||
module _ (𝔸 : Category ℓ ℓ) (F : Functor ((𝔸 ×p ℂ) .Product.obj) 𝔻) where
|
||||
open HasProducts (hasProducts {ℓ} {ℓ}) using (parallelProduct)
|
||||
|
|
|
@ -50,9 +50,11 @@ representable : ∀ {ℓ ℓ'} {ℂ : Category ℓ ℓ'} → Category.Object ℂ
|
|||
representable {ℂ = ℂ} A = record
|
||||
{ func* = λ B → ℂ .Arrow A B
|
||||
; func→ = ℂ ._⊕_
|
||||
; ident = funExt λ _ → snd ident
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ _ → snd ident
|
||||
; distrib = funExt λ x → sym assoc
|
||||
}
|
||||
}
|
||||
where
|
||||
open IsCategory (ℂ .isCategory)
|
||||
|
||||
|
@ -65,8 +67,10 @@ presheaf : {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} → Category.Object (Opp
|
|||
presheaf {ℂ = ℂ} B = record
|
||||
{ func* = λ A → ℂ .Arrow A B
|
||||
; func→ = λ f g → ℂ ._⊕_ g f
|
||||
; ident = funExt λ x → fst ident
|
||||
; isFunctor = record
|
||||
{ ident = funExt λ x → fst ident
|
||||
; distrib = funExt λ x → assoc
|
||||
}
|
||||
}
|
||||
where
|
||||
open IsCategory (ℂ .isCategory)
|
||||
|
|
|
@ -87,6 +87,8 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
|||
yoneda = record
|
||||
{ func* = prshf
|
||||
; func→ = :func→:
|
||||
; ident = :ident:
|
||||
; isFunctor = record
|
||||
{ ident = :ident:
|
||||
; distrib = {!!}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,36 +6,55 @@ open import Function
|
|||
|
||||
open import Cat.Category
|
||||
|
||||
record Functor {ℓc ℓc' ℓd ℓd'} (C : Category ℓc ℓc') (D : Category ℓd ℓd')
|
||||
open Category
|
||||
|
||||
module _ {ℓc ℓc' ℓd ℓd'} (ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where
|
||||
record IsFunctor
|
||||
(func* : ℂ .Object → 𝔻 .Object)
|
||||
(func→ : {A B : ℂ .Object} → ℂ .Arrow A B → 𝔻 .Arrow (func* A) (func* B))
|
||||
: Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
open Category
|
||||
field
|
||||
func* : C .Object → D .Object
|
||||
func→ : {dom cod : C .Object} → C .Arrow dom cod → D .Arrow (func* dom) (func* cod)
|
||||
ident : { c : C .Object } → func→ (C .𝟙 {c}) ≡ D .𝟙 {func* c}
|
||||
ident : { c : ℂ .Object } → func→ (ℂ .𝟙 {c}) ≡ 𝔻 .𝟙 {func* c}
|
||||
-- TODO: Avoid use of ugly explicit arguments somehow.
|
||||
-- This guy managed to do it:
|
||||
-- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda
|
||||
distrib : { c c' c'' : C .Object} {a : C .Arrow c c'} {a' : C .Arrow c' c''}
|
||||
→ func→ (C ._⊕_ a' a) ≡ D ._⊕_ (func→ a') (func→ a)
|
||||
distrib : {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C}
|
||||
→ func→ (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (func→ g) (func→ f)
|
||||
|
||||
record Functor : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
field
|
||||
func* : ℂ .Object → 𝔻 .Object
|
||||
func→ : {A B : ℂ .Object} → ℂ .Arrow A B → 𝔻 .Arrow (func* A) (func* B)
|
||||
{{isFunctor}} : IsFunctor func* func→
|
||||
|
||||
open IsFunctor
|
||||
open Functor
|
||||
open Category
|
||||
|
||||
module _ {ℓ ℓ' : Level} {ℂ 𝔻 : Category ℓ ℓ'} where
|
||||
private
|
||||
_ℂ⊕_ = ℂ ._⊕_
|
||||
|
||||
-- IsFunctor≡ : ∀ {A B : ℂ .Object} {func* : ℂ .Object → 𝔻 .Object} {func→ : {A B : ℂ .Object} → ℂ .Arrow A B → 𝔻 .Arrow (func* A) (func* B)} {F G : IsFunctor ℂ 𝔻 func* func→}
|
||||
-- → (eqI : PathP (λ i → ∀ {A : ℂ .Object} → func→ (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {func* A})
|
||||
-- (F .ident) (G .ident))
|
||||
-- → (eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C}
|
||||
-- → func→ (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (func→ g) (func→ f))
|
||||
-- (F .distrib) (G .distrib))
|
||||
-- → F ≡ G
|
||||
-- IsFunctor≡ eqI eqD i = record { ident = eqI i ; distrib = eqD i }
|
||||
|
||||
Functor≡ : {F G : Functor ℂ 𝔻}
|
||||
→ (eq* : F .func* ≡ G .func*)
|
||||
→ (eq→ : PathP (λ i → ∀ {x y} → ℂ .Arrow x y → 𝔻 .Arrow (eq* i x) (eq* i y))
|
||||
(F .func→) (G .func→))
|
||||
-- → (eqIsF : PathP (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) (F .isFunctor) (G .isFunctor))
|
||||
→ (eqI : PathP (λ i → ∀ {A : ℂ .Object} → eq→ i (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A})
|
||||
(ident F) (ident G))
|
||||
(F .isFunctor .ident) (G .isFunctor .ident))
|
||||
→ (eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C}
|
||||
→ eq→ i (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (eq→ i g) (eq→ i f))
|
||||
(distrib F) (distrib G))
|
||||
(F .isFunctor .distrib) (G .isFunctor .distrib))
|
||||
→ F ≡ G
|
||||
Functor≡ eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i }
|
||||
Functor≡ eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; isFunctor = record { ident = eqI i ; distrib = eqD i } }
|
||||
|
||||
module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : Functor A B) where
|
||||
private
|
||||
|
@ -51,8 +70,8 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
|||
dist : (F→ ∘ G→) (α1 A⊕ α0) ≡ (F→ ∘ G→) α1 C⊕ (F→ ∘ G→) α0
|
||||
dist = begin
|
||||
(F→ ∘ G→) (α1 A⊕ α0) ≡⟨ refl ⟩
|
||||
F→ (G→ (α1 A⊕ α0)) ≡⟨ cong F→ (G .distrib)⟩
|
||||
F→ ((G→ α1) B⊕ (G→ α0)) ≡⟨ F .distrib ⟩
|
||||
F→ (G→ (α1 A⊕ α0)) ≡⟨ cong F→ (G .isFunctor .distrib)⟩
|
||||
F→ ((G→ α1) B⊕ (G→ α0)) ≡⟨ F .isFunctor .distrib ⟩
|
||||
(F→ ∘ G→) α1 C⊕ (F→ ∘ G→) α0 ∎
|
||||
|
||||
_∘f_ : Functor A C
|
||||
|
@ -60,19 +79,23 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
|||
record
|
||||
{ func* = F* ∘ G*
|
||||
; func→ = F→ ∘ G→
|
||||
; ident = begin
|
||||
; isFunctor = record
|
||||
{ ident = begin
|
||||
(F→ ∘ G→) (A .𝟙) ≡⟨ refl ⟩
|
||||
F→ (G→ (A .𝟙)) ≡⟨ cong F→ (G .ident)⟩
|
||||
F→ (B .𝟙) ≡⟨ F .ident ⟩
|
||||
F→ (G→ (A .𝟙)) ≡⟨ cong F→ (G .isFunctor .ident)⟩
|
||||
F→ (B .𝟙) ≡⟨ F .isFunctor .ident ⟩
|
||||
C .𝟙 ∎
|
||||
; distrib = dist
|
||||
}
|
||||
}
|
||||
|
||||
-- The identity functor
|
||||
identity : ∀ {ℓ ℓ'} → {C : Category ℓ ℓ'} → Functor C C
|
||||
identity = record
|
||||
{ func* = λ x → x
|
||||
; func→ = λ x → x
|
||||
; ident = refl
|
||||
; isFunctor = record
|
||||
{ ident = refl
|
||||
; distrib = refl
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue