Move some more things into RawCategory
This commit is contained in:
parent
0c861c4bde
commit
d2da84269f
|
@ -65,6 +65,22 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||||||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||||||
|
|
||||||
|
unique = isContr
|
||||||
|
|
||||||
|
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||||||
|
IsInitial I = {X : Object} → unique (Arrow I X)
|
||||||
|
|
||||||
|
IsTerminal : Object → Set (ℓa ⊔ ℓb)
|
||||||
|
-- ∃![ ? ] ?
|
||||||
|
IsTerminal T = {X : Object} → unique (Arrow X T)
|
||||||
|
|
||||||
|
Initial : Set (ℓa ⊔ ℓb)
|
||||||
|
Initial = Σ (Object) IsInitial
|
||||||
|
|
||||||
|
Terminal : Set (ℓa ⊔ ℓb)
|
||||||
|
Terminal = Σ (Object) IsTerminal
|
||||||
|
|
||||||
|
|
||||||
-- Univalence is indexed by a raw category as well as an identity proof.
|
-- Univalence is indexed by a raw category as well as an identity proof.
|
||||||
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
open RawCategory ℂ
|
open RawCategory ℂ
|
||||||
|
@ -235,20 +251,3 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||||||
raw (Opposite-is-involution i) = rawOp i
|
raw (Opposite-is-involution i) = rawOp i
|
||||||
isCategory (Opposite-is-involution i) = rawIsCat i
|
isCategory (Opposite-is-involution i) = rawIsCat i
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|
||||||
open Category
|
|
||||||
unique = isContr
|
|
||||||
|
|
||||||
IsInitial : Object ℂ → Set (ℓa ⊔ ℓb)
|
|
||||||
IsInitial I = {X : Object ℂ} → unique (ℂ [ I , X ])
|
|
||||||
|
|
||||||
IsTerminal : Object ℂ → Set (ℓa ⊔ ℓb)
|
|
||||||
-- ∃![ ? ] ?
|
|
||||||
IsTerminal T = {X : Object ℂ} → unique (ℂ [ X , T ])
|
|
||||||
|
|
||||||
Initial : Set (ℓa ⊔ ℓb)
|
|
||||||
Initial = Σ (Object ℂ) IsInitial
|
|
||||||
|
|
||||||
Terminal : Set (ℓa ⊔ ℓb)
|
|
||||||
Terminal = Σ (Object ℂ) IsTerminal
|
|
||||||
|
|
Loading…
Reference in a new issue