Move some more things into RawCategory
This commit is contained in:
parent
0c861c4bde
commit
d2da84269f
|
@ -65,6 +65,22 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
|||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||||
|
||||
unique = isContr
|
||||
|
||||
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||||
IsInitial I = {X : Object} → unique (Arrow I X)
|
||||
|
||||
IsTerminal : Object → Set (ℓa ⊔ ℓb)
|
||||
-- ∃![ ? ] ?
|
||||
IsTerminal T = {X : Object} → unique (Arrow X T)
|
||||
|
||||
Initial : Set (ℓa ⊔ ℓb)
|
||||
Initial = Σ (Object) IsInitial
|
||||
|
||||
Terminal : Set (ℓa ⊔ ℓb)
|
||||
Terminal = Σ (Object) IsTerminal
|
||||
|
||||
|
||||
-- Univalence is indexed by a raw category as well as an identity proof.
|
||||
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||
open RawCategory ℂ
|
||||
|
@ -235,20 +251,3 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||||
raw (Opposite-is-involution i) = rawOp i
|
||||
isCategory (Opposite-is-involution i) = rawIsCat i
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
open Category
|
||||
unique = isContr
|
||||
|
||||
IsInitial : Object ℂ → Set (ℓa ⊔ ℓb)
|
||||
IsInitial I = {X : Object ℂ} → unique (ℂ [ I , X ])
|
||||
|
||||
IsTerminal : Object ℂ → Set (ℓa ⊔ ℓb)
|
||||
-- ∃![ ? ] ?
|
||||
IsTerminal T = {X : Object ℂ} → unique (ℂ [ X , T ])
|
||||
|
||||
Initial : Set (ℓa ⊔ ℓb)
|
||||
Initial = Σ (Object ℂ) IsInitial
|
||||
|
||||
Terminal : Set (ℓa ⊔ ℓb)
|
||||
Terminal = Σ (Object ℂ) IsTerminal
|
||||
|
|
Loading…
Reference in a new issue