Documentation for natural transformations
This commit is contained in:
parent
689a6467c6
commit
dd11b69c71
|
@ -1,3 +1,22 @@
|
|||
-- This module Essentially just provides the data for natural transformations
|
||||
--
|
||||
-- This includes:
|
||||
--
|
||||
-- The types:
|
||||
--
|
||||
-- * Transformation - a family of functors
|
||||
-- * Natural - naturality condition for transformations
|
||||
-- * NaturalTransformation - both of the above
|
||||
--
|
||||
-- Elements of the above:
|
||||
--
|
||||
-- * identityTrans - the identity transformation
|
||||
-- * identityNatural - naturality for the above
|
||||
-- * identity - both of the above
|
||||
--
|
||||
-- Functions for manipulating the above:
|
||||
--
|
||||
-- * A composition operator.
|
||||
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||||
module Cat.Category.NaturalTransformation where
|
||||
open import Agda.Primitive
|
||||
|
@ -29,6 +48,8 @@ module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
|||
NaturalTransformation : Set (ℓc ⊔ ℓc' ⊔ ℓd')
|
||||
NaturalTransformation = Σ Transformation Natural
|
||||
|
||||
-- TODO: Since naturality is a mere proposition this principle can be
|
||||
-- simplified.
|
||||
NaturalTransformation≡ : {α β : NaturalTransformation}
|
||||
→ (eq₁ : α .proj₁ ≡ β .proj₁)
|
||||
→ (eq₂ : PathP
|
||||
|
|
Loading…
Reference in a new issue