Readd stuff about the yoneda embedding
This commit is contained in:
parent
954a89f8d1
commit
de1d19c442
|
@ -72,33 +72,13 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} (unprovable : IsCategory (RawCat
|
|||
[ (λ _ x → ℂ [ ℂ.𝟙 ∘ x ]) ≡ identityTrans (prshf c) ]
|
||||
eqTrans = funExt λ x → funExt λ x → ℂ.ident .proj₂
|
||||
|
||||
eqNat : (λ i → Natural (prshf c) (prshf c) (eqTrans i))
|
||||
[(λ _ → funExt (λ _ → ℂ.assoc)) ≡ identityNatural (prshf c)]
|
||||
eqNat = λ i {A} {B} f →
|
||||
let
|
||||
open Category 𝓢
|
||||
lemm : (𝓢 [ eqTrans i B ∘ func→ (prshf c) f ]) ≡
|
||||
(𝓢 [ func→ (prshf c) f ∘ eqTrans i A ])
|
||||
lemm = {!!}
|
||||
lem : (λ _ → 𝓢 [ Functor.func* (prshf c) A , func* (prshf c) B ])
|
||||
[ 𝓢 [ eqTrans i B ∘ func→ (prshf c) f ]
|
||||
≡ 𝓢 [ func→ (prshf c) f ∘ eqTrans i A ] ]
|
||||
lem
|
||||
= arrowIsSet _ _ lemm _ i
|
||||
-- (Sets [ eqTrans i B ∘ prshf c .func→ f ])
|
||||
-- (Sets [ prshf c .func→ f ∘ eqTrans i A ])
|
||||
-- lemm
|
||||
-- _ i
|
||||
in
|
||||
lem
|
||||
-- eqNat = λ {A} {B} i ℂ[B,A] i' ℂ[A,c] →
|
||||
-- let
|
||||
-- k : ℂ [ {!!} , {!!} ]
|
||||
-- k = ℂ[A,c]
|
||||
-- in {!ℂ [ ? ∘ ? ]!}
|
||||
|
||||
:ident: : (:func→: (ℂ.𝟙 {c})) ≡ (Category.𝟙 Fun {A = prshf c})
|
||||
:ident: = Σ≡ eqTrans eqNat
|
||||
open import Cubical.NType.Properties
|
||||
open import Cat.Categories.Fun
|
||||
:ident: : :func→: (ℂ.𝟙 {c}) ≡ Category.𝟙 Fun {A = prshf c}
|
||||
:ident: = lemSig (naturalIsProp {F = prshf c} {prshf c}) _ _ eq
|
||||
where
|
||||
eq : (λ C x → ℂ [ ℂ.𝟙 ∘ x ]) ≡ identityTrans (prshf c)
|
||||
eq = funExt λ A → funExt λ B → proj₂ ℂ.ident
|
||||
|
||||
yoneda : Functor ℂ (Fun {ℂ = Opposite ℂ} {𝔻 = 𝓢})
|
||||
yoneda = record
|
||||
|
|
Loading…
Reference in a new issue