From e16a4b81895782087dd627bcc6b49e8f34ee0ac3 Mon Sep 17 00:00:00 2001 From: Andrea Vezzosi Date: Fri, 15 Jun 2018 10:02:46 +0200 Subject: [PATCH] isEquiv is now a record --- src/Cat/Category.agda | 2 +- src/Cat/Equivalence.agda | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index e795e3c..24ba6aa 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -152,7 +152,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x propUnivalent : isProp Univalent - propUnivalent a b i = propPi (λ iso → propIsContr) a b i + propUnivalent a b i .equiv-proof = propPi (λ iso → propIsContr) (a .equiv-proof) (b .equiv-proof) i module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where record IsPreCategory : Set (lsuc (ℓa ⊔ ℓb)) where diff --git a/src/Cat/Equivalence.agda b/src/Cat/Equivalence.agda index 6e55cbf..62ce642 100644 --- a/src/Cat/Equivalence.agda +++ b/src/Cat/Equivalence.agda @@ -184,7 +184,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where private module _ {obverse : A → B} (e : isEquiv A B obverse) where inverse : B → A - inverse b = fst (fst (e b)) + inverse b = fst (fst (e .equiv-proof b)) reverse : B → A reverse = inverse @@ -198,7 +198,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where b ∎ where μ : (b : B) → b ≡ obverse (inverse b) - μ b = snd (fst (e b)) + μ b = snd (fst (e .equiv-proof b)) verso-recto : ∀ a → (inverse ∘ obverse) a ≡ a verso-recto a = begin (inverse ∘ obverse) a ≡⟨ sym h ⟩ @@ -206,7 +206,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where a ∎ where c : isContr (fiber obverse (obverse a)) - c = e (obverse a) + c = e .equiv-proof (obverse a) fbr : fiber obverse (obverse a) fbr = fst c a' : A