Chain reexport things in Functor
This commit is contained in:
parent
885fd8fa69
commit
e46edf1f68
|
@ -24,7 +24,7 @@ module _ {ℓc ℓc' ℓd ℓd'}
|
||||||
func→ : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ func* A , func* B ]
|
func→ : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ func* A , func* B ]
|
||||||
|
|
||||||
record IsFunctor (F : RawFunctor) : 𝓤 where
|
record IsFunctor (F : RawFunctor) : 𝓤 where
|
||||||
open RawFunctor F
|
open RawFunctor F public
|
||||||
field
|
field
|
||||||
ident : {c : Object ℂ} → func→ (𝟙 ℂ {c}) ≡ 𝟙 𝔻 {func* c}
|
ident : {c : Object ℂ} → func→ (𝟙 ℂ {c}) ≡ 𝟙 𝔻 {func* c}
|
||||||
distrib : {A B C : Object ℂ} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
distrib : {A B C : Object ℂ} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
||||||
|
@ -35,16 +35,8 @@ module _ {ℓc ℓc' ℓd ℓd'}
|
||||||
raw : RawFunctor
|
raw : RawFunctor
|
||||||
{{isFunctor}} : IsFunctor raw
|
{{isFunctor}} : IsFunctor raw
|
||||||
|
|
||||||
private
|
open IsFunctor isFunctor public
|
||||||
module R = RawFunctor raw
|
|
||||||
|
|
||||||
func* : Object ℂ → Object 𝔻
|
|
||||||
func* = R.func*
|
|
||||||
|
|
||||||
func→ : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ func* A , func* B ]
|
|
||||||
func→ = R.func→
|
|
||||||
|
|
||||||
open IsFunctor
|
|
||||||
open Functor
|
open Functor
|
||||||
|
|
||||||
module _
|
module _
|
||||||
|
@ -108,8 +100,8 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
||||||
dist : (F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡ C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ]
|
dist : (F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡ C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ]
|
||||||
dist = begin
|
dist = begin
|
||||||
(F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡⟨ refl ⟩
|
(F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡⟨ refl ⟩
|
||||||
F→ (G→ (A [ α1 ∘ α0 ])) ≡⟨ cong F→ (G .isFunctor .distrib)⟩
|
F→ (G→ (A [ α1 ∘ α0 ])) ≡⟨ cong F→ (distrib G) ⟩
|
||||||
F→ (B [ G→ α1 ∘ G→ α0 ]) ≡⟨ F .isFunctor .distrib ⟩
|
F→ (B [ G→ α1 ∘ G→ α0 ]) ≡⟨ distrib F ⟩
|
||||||
C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ] ∎
|
C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ] ∎
|
||||||
|
|
||||||
_∘fr_ : RawFunctor A C
|
_∘fr_ : RawFunctor A C
|
||||||
|
@ -120,8 +112,8 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
||||||
isFunctor' = record
|
isFunctor' = record
|
||||||
{ ident = begin
|
{ ident = begin
|
||||||
(F→ ∘ G→) (𝟙 A) ≡⟨ refl ⟩
|
(F→ ∘ G→) (𝟙 A) ≡⟨ refl ⟩
|
||||||
F→ (G→ (𝟙 A)) ≡⟨ cong F→ (G .isFunctor .ident)⟩
|
F→ (G→ (𝟙 A)) ≡⟨ cong F→ (ident G)⟩
|
||||||
F→ (𝟙 B) ≡⟨ F .isFunctor .ident ⟩
|
F→ (𝟙 B) ≡⟨ ident F ⟩
|
||||||
𝟙 C ∎
|
𝟙 C ∎
|
||||||
; distrib = dist
|
; distrib = dist
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue