[WIP] equivalence of kleisli- resp. monoidal- representation of monad
This commit is contained in:
parent
3e12331294
commit
e4e327d1d2
|
@ -1,4 +1,4 @@
|
||||||
{-# OPTIONS --cubical #-}
|
{-# OPTIONS --cubical --allow-unsolved-metas #-}
|
||||||
module Cat.Category.Monad where
|
module Cat.Category.Monad where
|
||||||
|
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
|
@ -12,7 +12,7 @@ open import Cat.Category.Functor as F
|
||||||
open import Cat.Category.NaturalTransformation
|
open import Cat.Category.NaturalTransformation
|
||||||
open import Cat.Categories.Fun
|
open import Cat.Categories.Fun
|
||||||
|
|
||||||
-- "A monad in the monoidal form" [vlad]
|
-- "A monad in the monoidal form" [voe]
|
||||||
module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
private
|
private
|
||||||
ℓ = ℓa ⊔ ℓb
|
ℓ = ℓa ⊔ ℓb
|
||||||
|
@ -27,15 +27,16 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
-- (>=>)
|
-- (>=>)
|
||||||
μNat : NaturalTransformation F[ R ∘ R ] R
|
μNat : NaturalTransformation F[ R ∘ R ] R
|
||||||
|
|
||||||
|
η : Transformation F.identity R
|
||||||
|
η = proj₁ ηNat
|
||||||
|
μ : Transformation F[ R ∘ R ] R
|
||||||
|
μ = proj₁ μNat
|
||||||
|
|
||||||
private
|
private
|
||||||
module R = Functor R
|
module R = Functor R
|
||||||
module RR = Functor F[ R ∘ R ]
|
module RR = Functor F[ R ∘ R ]
|
||||||
module _ {X : Object} where
|
module _ {X : Object} where
|
||||||
-- module IdRX = Functor (F.identity {C = RX})
|
-- module IdRX = Functor (F.identity {C = RX})
|
||||||
|
|
||||||
η : Transformation F.identity R
|
|
||||||
η = proj₁ ηNat
|
|
||||||
ηX : ℂ [ X , R.func* X ]
|
ηX : ℂ [ X , R.func* X ]
|
||||||
ηX = η X
|
ηX = η X
|
||||||
RηX : ℂ [ R.func* X , R.func* (R.func* X) ] -- ℂ [ R.func* X , {!R.func* (R.func* X))!} ]
|
RηX : ℂ [ R.func* X , R.func* (R.func* X) ] -- ℂ [ R.func* X , {!R.func* (R.func* X))!} ]
|
||||||
|
@ -44,8 +45,6 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
IdRX : Arrow (R.func* X) (R.func* X)
|
IdRX : Arrow (R.func* X) (R.func* X)
|
||||||
IdRX = 𝟙 {R.func* X}
|
IdRX = 𝟙 {R.func* X}
|
||||||
|
|
||||||
μ : Transformation F[ R ∘ R ] R
|
|
||||||
μ = proj₁ μNat
|
|
||||||
μX : ℂ [ RR.func* X , R.func* X ]
|
μX : ℂ [ RR.func* X , R.func* X ]
|
||||||
μX = μ X
|
μX = μ X
|
||||||
RμX : ℂ [ R.func* (RR.func* X) , RR.func* X ]
|
RμX : ℂ [ R.func* (RR.func* X) , RR.func* X ]
|
||||||
|
@ -77,7 +76,7 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
isMonad : IsMonad raw
|
isMonad : IsMonad raw
|
||||||
open IsMonad isMonad public
|
open IsMonad isMonad public
|
||||||
|
|
||||||
-- "A monad in the Kleisli form" [vlad]
|
-- "A monad in the Kleisli form" [voe]
|
||||||
module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
private
|
private
|
||||||
ℓ = ℓa ⊔ ℓb
|
ℓ = ℓa ⊔ ℓb
|
||||||
|
@ -86,13 +85,14 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
record RawMonad : Set ℓ where
|
record RawMonad : Set ℓ where
|
||||||
field
|
field
|
||||||
RR : Object → Object
|
RR : Object → Object
|
||||||
η : {X : Object} → ℂ [ X , RR X ]
|
-- Note name-change from [voe]
|
||||||
|
ζ : {X : Object} → ℂ [ X , RR X ]
|
||||||
rr : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ]
|
rr : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ]
|
||||||
-- Name suggestions are welcome!
|
-- Name suggestions are welcome!
|
||||||
IsIdentity = {X : Object}
|
IsIdentity = {X : Object}
|
||||||
→ rr η ≡ 𝟙 {RR X}
|
→ rr ζ ≡ 𝟙 {RR X}
|
||||||
IsNatural = {X Y : Object} (f : ℂ [ X , RR Y ])
|
IsNatural = {X Y : Object} (f : ℂ [ X , RR Y ])
|
||||||
→ (ℂ [ rr f ∘ η ]) ≡ f
|
→ (ℂ [ rr f ∘ ζ ]) ≡ f
|
||||||
IsDistributive = {X Y Z : Object} (g : ℂ [ Y , RR Z ]) (f : ℂ [ X , RR Y ])
|
IsDistributive = {X Y Z : Object} (g : ℂ [ Y , RR Z ]) (f : ℂ [ X , RR Y ])
|
||||||
→ ℂ [ rr g ∘ rr f ] ≡ rr (ℂ [ rr g ∘ f ])
|
→ ℂ [ rr g ∘ rr f ] ≡ rr (ℂ [ rr g ∘ f ])
|
||||||
|
|
||||||
|
@ -108,3 +108,67 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
raw : RawMonad
|
raw : RawMonad
|
||||||
isMonad : IsMonad raw
|
isMonad : IsMonad raw
|
||||||
open IsMonad isMonad public
|
open IsMonad isMonad public
|
||||||
|
|
||||||
|
-- Problem 2.3
|
||||||
|
module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
|
private
|
||||||
|
open Category ℂ using (Object ; Arrow ; 𝟙)
|
||||||
|
open Functor using (func* ; func→)
|
||||||
|
module M = Monoidal ℂ
|
||||||
|
module K = Kleisli ℂ
|
||||||
|
|
||||||
|
module _ (m : M.RawMonad) where
|
||||||
|
private
|
||||||
|
open M.RawMonad m
|
||||||
|
module Kraw = K.RawMonad
|
||||||
|
|
||||||
|
RR : Object → Object
|
||||||
|
RR = func* R
|
||||||
|
|
||||||
|
R→ : {A B : Object} → ℂ [ A , B ] → ℂ [ RR A , RR B ]
|
||||||
|
R→ = func→ R
|
||||||
|
|
||||||
|
ζ : {X : Object} → ℂ [ X , RR X ]
|
||||||
|
ζ = {!!}
|
||||||
|
|
||||||
|
rr : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ]
|
||||||
|
-- Order is different now!
|
||||||
|
rr {X} {Y} f = ℂ [ f ∘ {!!} ]
|
||||||
|
where
|
||||||
|
μY : ℂ [ func* F[ R ∘ R ] Y , func* R Y ]
|
||||||
|
μY = μ Y
|
||||||
|
ζY : ℂ [ Y , RR Y ]
|
||||||
|
ζY = ζ {Y}
|
||||||
|
|
||||||
|
forthRaw : K.RawMonad
|
||||||
|
Kraw.RR forthRaw = RR
|
||||||
|
Kraw.ζ forthRaw = ζ
|
||||||
|
Kraw.rr forthRaw = rr
|
||||||
|
|
||||||
|
module _ {raw : M.RawMonad} (m : M.IsMonad raw) where
|
||||||
|
open M.IsMonad m
|
||||||
|
module Kraw = K.RawMonad (forthRaw raw)
|
||||||
|
module Kis = K.IsMonad
|
||||||
|
isIdentity : Kraw.IsIdentity
|
||||||
|
isIdentity = {!!}
|
||||||
|
|
||||||
|
isNatural : Kraw.IsNatural
|
||||||
|
isNatural = {!!}
|
||||||
|
|
||||||
|
isDistributive : Kraw.IsDistributive
|
||||||
|
isDistributive = {!!}
|
||||||
|
|
||||||
|
forthIsMonad : K.IsMonad (forthRaw raw)
|
||||||
|
Kis.isIdentity forthIsMonad = isIdentity
|
||||||
|
Kis.isNatural forthIsMonad = isNatural
|
||||||
|
Kis.isDistributive forthIsMonad = isDistributive
|
||||||
|
|
||||||
|
forth : M.Monad → K.Monad
|
||||||
|
Kleisli.Monad.raw (forth m) = forthRaw (M.Monad.raw m)
|
||||||
|
Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m)
|
||||||
|
|
||||||
|
eqv : isEquiv M.Monad K.Monad forth
|
||||||
|
eqv = {!!}
|
||||||
|
|
||||||
|
Monoidal≃Kleisli : M.Monad ≃ K.Monad
|
||||||
|
Monoidal≃Kleisli = forth , eqv
|
||||||
|
|
Loading…
Reference in a new issue