diff --git a/src/Cat/Category/Monad/Kleisli.agda b/src/Cat/Category/Monad/Kleisli.agda index 366886b..6cc8cae 100644 --- a/src/Cat/Category/Monad/Kleisli.agda +++ b/src/Cat/Category/Monad/Kleisli.agda @@ -1,7 +1,7 @@ {--- The Kleisli formulation of monads ---} -{-# OPTIONS --cubical #-} +{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Primitive open import Cat.Prelude @@ -265,3 +265,34 @@ module _ {m n : Monad} (eq : Monad.raw m ≡ Monad.raw n) where Monad≡ : m ≡ n Monad.raw (Monad≡ i) = eq i Monad.isMonad (Monad≡ i) = eqIsMonad i + +module _ where + private + module _ (x y : RawMonad) (p q : x ≡ y) (a b : p ≡ q) where + eq0-helper : isGrpd (Object → Object) + eq0-helper = grpdPi (λ a → ℂ.groupoidObject) + + eq0 : cong (cong RawMonad.omap) a ≡ cong (cong RawMonad.omap) b + eq0 = eq0-helper + (RawMonad.omap x) (RawMonad.omap y) + (cong RawMonad.omap p) (cong RawMonad.omap q) + (cong (cong RawMonad.omap) a) (cong (cong RawMonad.omap) b) + + eq1-helper : (omap : Object → Object) → isGrpd ({X : Object} → ℂ [ X , omap X ]) + eq1-helper f = grpdPiImpl (setGrpd ℂ.arrowsAreSets) + + postulate + eq1 : PathP (λ i → PathP + (λ j → + PathP (λ k → {X : Object} → ℂ [ X , eq0 i j k X ]) + (RawMonad.pure x) (RawMonad.pure y)) + (λ i → RawMonad.pure (p i)) (λ i → RawMonad.pure (q i))) + (cong-d (cong-d RawMonad.pure) a) (cong-d (cong-d RawMonad.pure) b) + + grpdRaw : isGrpd RawMonad + RawMonad.omap (grpdRaw x y p q a b x₁ x₂ x₃) = eq0 x y p q a b x₁ x₂ x₃ + RawMonad.pure (grpdRaw x y p q a b x₁ x₂ x₃) = {!eq1 x y p q a b x₁ x₂ x₃!} + RawMonad.bind (grpdRaw x y p q a b x₁ x₂ x₃) = {!!} + + -- grpdKleisli : isGrpd Monad + -- grpdKleisli = {!!} diff --git a/src/Cat/Prelude.agda b/src/Cat/Prelude.agda index 2f0a8f2..62dd5bd 100644 --- a/src/Cat/Prelude.agda +++ b/src/Cat/Prelude.agda @@ -107,13 +107,13 @@ module _ {ℓ : Level} {A : Set ℓ} where ntypeCumulative {m} ≤′-refl lvl = lvl ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl) - grpdPi : {ℓa ℓb : Level} {A : Set ℓa} {B : A → Set ℓb} + grpdPi : {ℓb : Level} {B : A → Set ℓb} → ((a : A) → isGrpd (B a)) → isGrpd ((a : A) → (B a)) grpdPi = piPresNType (S (S (S ⟨-2⟩))) - grpdPiImpl : {ℓa ℓb : Level} {A : Set ℓa} {B : A → Set ℓb} + grpdPiImpl : {ℓb : Level} {B : A → Set ℓb} → ({a : A} → isGrpd (B a)) → isGrpd ({a : A} → (B a)) - grpdPiImpl {A = A} {B} g = equivPreservesNType {A = Expl} {B = Impl} {n = one} e (grpdPi (λ a → g)) + grpdPiImpl {B = B} g = equivPreservesNType {A = Expl} {B = Impl} {n = one} e (grpdPi (λ a → g)) where one = (S (S (S ⟨-2⟩))) t : ({a : A} → HasLevel one (B a))