Add frontmatter

This commit is contained in:
Frederik Hanghøj Iversen 2018-05-01 21:26:20 +02:00
parent 4b9fe0f5bb
commit e89021bc15
5 changed files with 60 additions and 21 deletions

View file

@ -39,6 +39,47 @@
\newcommand*{\researchgroup}[1]{\gdef\@researchgroup{#1}}
\newcommand*{\subtitle}[1]{\gdef\@subtitle{#1}}
%% \begin{titlepage}
\newgeometry{top=3cm, bottom=3cm,
left=2.25 cm, right=2.25cm} % Temporarily change margins
% Cover page background
%% \AddToShipoutPicture*{\backgroundpic{-4}{56.7}{figure/auxiliary/frontpage_gu_eng.pdf}}
%% \AddToShipoutPicture*{\backgroundpic{-4}{56.7}{logo_eng.pdf}}
%% \includegraphics[width=0.2\pdfpagewidth]{logo_eng.pdf}
%% \begin{center}
%% \includegraphics[width=0.5\paperwidth,height=\paperheight,keepaspectratio]{logo_eng.pdf}%
%% \end{center}
%% \addtolength{\voffset}{2cm}
% Cover picture (replace with your own or delete)
{\Huge\@title}\\[.5cm]
{\Large A formalization of category theory in Cubical Agda}\\[2.5cm]
\begin{center}
\includegraphics[\linewidth,height=0.35\paperheight,keepaspectratio]{isomorphism.png}
\end{center}
% Cover text
\vfill
%% \renewcommand{\familydefault}{\sfdefault} \normalfont % Set cover page font
Master's thesis in Computer Science \\[1cm]
{\Large\@author} \\[2cm]
\textsc{Department of Computer Science and Engineering}\\
\textsc{Chalmers University of Technology}\\
\textsc{University of Gothenburg}\\
\textsc{Gothenburg, Sweden \the\year}
%% \renewcommand{\familydefault}{\rmdefault} \normalfont % Reset standard font
%% \end{titlepage}
% BACK OF COVER PAGE (BLANK PAGE)
\newpage
\newgeometry{a4paper} % Temporarily change margins
\restoregeometry
\thispagestyle{empty}
\null
\renewcommand*{\maketitle}{%
\begin{titlepage}
@ -56,11 +97,11 @@
\includegraphics[width=0.2\pdfpagewidth]{logo_eng.pdf}
\vspace{5mm}
Department of Computer Science and Engineering\\
\emph{\@researchgroup}\\
\textsc{Department of Computer Science and Engineering}\\
\textsc{{\@researchgroup}}\\
%Name of research group (if applicable)\\
\textsc{\@institution} \\
Gothenburg, Sweden \the\year \\
\textsc{Gothenburg, Sweden \the\year}\\
\end{center}
@ -105,5 +146,5 @@ Telephone +46 31 772 1000 \setlength{\parskip}{0.5cm}\\
%Printed by [Name of printing company]\\
Gothenburg, Sweden \the\year
\restoregeometry
\end{titlepage}}

View file

@ -149,7 +149,7 @@ $$
So to give the continuous function $I \to \IsPreCategory$ that is our goal we
introduce $i \tp I$ and proceed by constructing an element of $\IsPreCategory$
by using that all the projections are propositions to generate paths between all
projections. Once we have such a path e.g. $p : \isIdentity_a \equiv
projections. Once we have such a path e.g. $p \tp \isIdentity_a \equiv
\isIdentity_b$ we can elimiate it with $i$ and thus obtaining $p\ i \tp
\isIdentity_{p\ i}$ and this element satisfies exactly that it corresponds to
the corresponding projections at either endpoint. Thus the element we construct
@ -198,9 +198,9 @@ provide since, as we have shown, $\IsPreCategory$ is a proposition. However,
even though $\Univalent$ is also a proposition, we cannot use this directly to
show the latter. This is becasue $\isProp$ talks about non-dependent paths. To
`promote' this to a dependent path we can use another useful combinator;
$\lemPropF$. Given a type $A \tp \MCU$ and a type family on $A$; $B : A \to
$\lemPropF$. Given a type $A \tp \MCU$ and a type family on $A$; $B \tp A \to
\MCU$. Let $P$ be a proposition indexed by an element of $A$ and say we have a
path between some two elements in $A$; $p : a_0 \equiv a_1$ then we can built a
path between some two elements in $A$; $p \tp a_0 \equiv a_1$ then we can built a
heterogeneous path between any two $b$'s at the endpoints:
%
$$
@ -240,15 +240,15 @@ here, but the curious reader can check the implementation for the details.
\section{Equivalences}
\label{sec:equiv}
The usual notion of a function $f : A \to B$ having an inverses is:
The usual notion of a function $f \tp A \to B$ having an inverses is:
%
$$
\sum_{g : B \to A} f \comp g \equiv \identity_{B} \x g \comp f \equiv \identity_{A}
\sum_{g \tp B \to A} f \comp g \equiv \identity_{B} \x g \comp f \equiv \identity_{A}
$$
%
This is defined in \cite[p. 129]{hott-2013} and is referred to as the a
quasi-inverse. At the same place \cite{hott-2013} gives an ``interface'' for
what an equivalence $\isEquiv : (A \to B) \to \MCU$ must supply:
what an equivalence $\isEquiv \tp (A \to B) \to \MCU$ must supply:
%
\begin{itemize}
\item
@ -264,11 +264,11 @@ how to work with equivalences and 2) to use ad-hoc definitions of equivalences.
The specific instantiation of $\isEquiv$ as defined in \cite{cubical-agda} is:
%
$$
isEquiv\ f \defeq \prod_{b : B} \isContr\ (\fiber\ f\ b)
isEquiv\ f \defeq \prod_{b \tp B} \isContr\ (\fiber\ f\ b)
$$
where
$$
\fiber\ f\ b \defeq \sum_{a \tp A} b \equiv f\ a
\fiber\ f\ b \defeq \sum_{a \tp A} \left( b \equiv f\ a \right)
$$
%
I give it's definition here mainly for completeness, because as I stated we can
@ -473,7 +473,7 @@ B$ is simply an arrow $f \tp \mathit{Arrow}\ A\ B$ and it's inverse $g \tp
\mathit{Arrow}\ B\ A$. In the opposite category $g$ will play the role of the
isomorphism and $f$ will be the inverse. Similarly we can go in the opposite
direction. I name these maps $\mathit{shuffle} \tp (A \approxeq B) \to (A
\approxeq_{\bC} B)$ and $\mathit{shuffle}^{-1} : (A \approxeq_{\bC} B) \to (A
\approxeq_{\bC} B)$ and $\mathit{shuffle}^{-1} \tp (A \approxeq_{\bC} B) \to (A
\approxeq B)$ respectively.
As the inverse of $\idToIso_{\mathit{Op}}$ I will pick $\zeta \defeq \eta \comp
@ -670,7 +670,7 @@ proposition and then use $\lemPropF$. So we prove the generalization:
%
\begin{align}
\label{eq:propAreInversesGen}
\prod_{g : B \to A} \isProp\ (\mathit{AreInverses}\ f\ g)
\prod_{g \tp B \to A} \isProp\ (\mathit{AreInverses}\ f\ g)
\end{align}
%
But $\mathit{AreInverses}\ f\ g$ is a pair of equations on arrows, so we use
@ -716,8 +716,6 @@ that there exists a unique arrow $\pi \tp \Arrow\ X\ (A \x B)$ satisfying
%% \prod_{X \tp Object} \prod_{f \tp \Arrow\ X\ A} \prod_{g \tp \Arrow\ X\ B}\\
%% \uexists_{f \x g \tp \Arrow\ X\ (A \x B)}
\pi_1 \lll \pi \equiv f \x \pi_2 \lll \pi \equiv g
%% ump : ∀ {X : Object} (f : [ X , A ]) (g : [ X , B ])
%% → ∃![ f×g ] ( [ fst ∘ f×g ] ≡ f P.× [ snd ∘ f×g ] ≡ g)
\end{align}
%
$\pi$ is called the product (arrow) of $f$ and $g$.

View file

@ -5,7 +5,7 @@
\hbox{\scriptsize.}\hbox{\scriptsize.}}}%
=}
\newcommand{\defeq}{\triangleq}
\newcommand{\defeq}{\mathrel{\triangleq}}
%% Alternatively:
%% \newcommand{\defeq}{}
\newcommand{\bN}{\mathbb{N}}
@ -21,7 +21,7 @@
\newcommand{\comp}{\circ}
\newcommand{\x}{\times}
\newcommand\inv[1]{#1\raisebox{1.15ex}{$\scriptscriptstyle-\!1$}}
\newcommand{\tp}{\;\mathord{:}\;}
\newcommand{\tp}{\mathrel{:}}
\newcommand{\Type}{\mathcal{U}}
\usepackage{graphicx}

View file

@ -4,7 +4,7 @@
\input{packages.tex}
\input{macros.tex}
\title{Univalent Categories in Cubical Agda}
\title{Univalent Categories}
\author{Frederik Hanghøj Iversen}
%% \usepackage[
@ -26,7 +26,7 @@
%% researchgroup=Programming Logic Group
%% ]{chalmerstitle}
\usepackage{chalmerstitle}
\subtitle{}
\subtitle{A formalization of category theory in Cubical Agda}
\authoremail{hanghj@student.chalmers.se}
\newcommand{\chalmers}{Chalmers University of Technology}
\supervisor{Thierry Coquand}

View file

@ -15,7 +15,7 @@
\usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym}
\usepackage[toc,page]{appendix}
\usepackage{xspace}
%% \usepackage{geometry}
\usepackage{geometry}
% \setlength{\parskip}{10pt}