Add frontmatter

This commit is contained in:
Frederik Hanghøj Iversen 2018-05-01 21:26:20 +02:00
parent 4b9fe0f5bb
commit e89021bc15
5 changed files with 60 additions and 21 deletions

View file

@ -39,6 +39,47 @@
\newcommand*{\researchgroup}[1]{\gdef\@researchgroup{#1}} \newcommand*{\researchgroup}[1]{\gdef\@researchgroup{#1}}
\newcommand*{\subtitle}[1]{\gdef\@subtitle{#1}} \newcommand*{\subtitle}[1]{\gdef\@subtitle{#1}}
%% \begin{titlepage}
\newgeometry{top=3cm, bottom=3cm,
left=2.25 cm, right=2.25cm} % Temporarily change margins
% Cover page background
%% \AddToShipoutPicture*{\backgroundpic{-4}{56.7}{figure/auxiliary/frontpage_gu_eng.pdf}}
%% \AddToShipoutPicture*{\backgroundpic{-4}{56.7}{logo_eng.pdf}}
%% \includegraphics[width=0.2\pdfpagewidth]{logo_eng.pdf}
%% \begin{center}
%% \includegraphics[width=0.5\paperwidth,height=\paperheight,keepaspectratio]{logo_eng.pdf}%
%% \end{center}
%% \addtolength{\voffset}{2cm}
% Cover picture (replace with your own or delete)
{\Huge\@title}\\[.5cm]
{\Large A formalization of category theory in Cubical Agda}\\[2.5cm]
\begin{center}
\includegraphics[\linewidth,height=0.35\paperheight,keepaspectratio]{isomorphism.png}
\end{center}
% Cover text
\vfill
%% \renewcommand{\familydefault}{\sfdefault} \normalfont % Set cover page font
Master's thesis in Computer Science \\[1cm]
{\Large\@author} \\[2cm]
\textsc{Department of Computer Science and Engineering}\\
\textsc{Chalmers University of Technology}\\
\textsc{University of Gothenburg}\\
\textsc{Gothenburg, Sweden \the\year}
%% \renewcommand{\familydefault}{\rmdefault} \normalfont % Reset standard font
%% \end{titlepage}
% BACK OF COVER PAGE (BLANK PAGE)
\newpage
\newgeometry{a4paper} % Temporarily change margins
\restoregeometry
\thispagestyle{empty}
\null
\renewcommand*{\maketitle}{% \renewcommand*{\maketitle}{%
\begin{titlepage} \begin{titlepage}
@ -56,11 +97,11 @@
\includegraphics[width=0.2\pdfpagewidth]{logo_eng.pdf} \includegraphics[width=0.2\pdfpagewidth]{logo_eng.pdf}
\vspace{5mm} \vspace{5mm}
Department of Computer Science and Engineering\\ \textsc{Department of Computer Science and Engineering}\\
\emph{\@researchgroup}\\ \textsc{{\@researchgroup}}\\
%Name of research group (if applicable)\\ %Name of research group (if applicable)\\
\textsc{\@institution} \\ \textsc{\@institution} \\
Gothenburg, Sweden \the\year \\ \textsc{Gothenburg, Sweden \the\year}\\
\end{center} \end{center}
@ -105,5 +146,5 @@ Telephone +46 31 772 1000 \setlength{\parskip}{0.5cm}\\
%Printed by [Name of printing company]\\ %Printed by [Name of printing company]\\
Gothenburg, Sweden \the\year Gothenburg, Sweden \the\year
\restoregeometry
\end{titlepage}} \end{titlepage}}

View file

@ -149,7 +149,7 @@ $$
So to give the continuous function $I \to \IsPreCategory$ that is our goal we So to give the continuous function $I \to \IsPreCategory$ that is our goal we
introduce $i \tp I$ and proceed by constructing an element of $\IsPreCategory$ introduce $i \tp I$ and proceed by constructing an element of $\IsPreCategory$
by using that all the projections are propositions to generate paths between all by using that all the projections are propositions to generate paths between all
projections. Once we have such a path e.g. $p : \isIdentity_a \equiv projections. Once we have such a path e.g. $p \tp \isIdentity_a \equiv
\isIdentity_b$ we can elimiate it with $i$ and thus obtaining $p\ i \tp \isIdentity_b$ we can elimiate it with $i$ and thus obtaining $p\ i \tp
\isIdentity_{p\ i}$ and this element satisfies exactly that it corresponds to \isIdentity_{p\ i}$ and this element satisfies exactly that it corresponds to
the corresponding projections at either endpoint. Thus the element we construct the corresponding projections at either endpoint. Thus the element we construct
@ -198,9 +198,9 @@ provide since, as we have shown, $\IsPreCategory$ is a proposition. However,
even though $\Univalent$ is also a proposition, we cannot use this directly to even though $\Univalent$ is also a proposition, we cannot use this directly to
show the latter. This is becasue $\isProp$ talks about non-dependent paths. To show the latter. This is becasue $\isProp$ talks about non-dependent paths. To
`promote' this to a dependent path we can use another useful combinator; `promote' this to a dependent path we can use another useful combinator;
$\lemPropF$. Given a type $A \tp \MCU$ and a type family on $A$; $B : A \to $\lemPropF$. Given a type $A \tp \MCU$ and a type family on $A$; $B \tp A \to
\MCU$. Let $P$ be a proposition indexed by an element of $A$ and say we have a \MCU$. Let $P$ be a proposition indexed by an element of $A$ and say we have a
path between some two elements in $A$; $p : a_0 \equiv a_1$ then we can built a path between some two elements in $A$; $p \tp a_0 \equiv a_1$ then we can built a
heterogeneous path between any two $b$'s at the endpoints: heterogeneous path between any two $b$'s at the endpoints:
% %
$$ $$
@ -240,15 +240,15 @@ here, but the curious reader can check the implementation for the details.
\section{Equivalences} \section{Equivalences}
\label{sec:equiv} \label{sec:equiv}
The usual notion of a function $f : A \to B$ having an inverses is: The usual notion of a function $f \tp A \to B$ having an inverses is:
% %
$$ $$
\sum_{g : B \to A} f \comp g \equiv \identity_{B} \x g \comp f \equiv \identity_{A} \sum_{g \tp B \to A} f \comp g \equiv \identity_{B} \x g \comp f \equiv \identity_{A}
$$ $$
% %
This is defined in \cite[p. 129]{hott-2013} and is referred to as the a This is defined in \cite[p. 129]{hott-2013} and is referred to as the a
quasi-inverse. At the same place \cite{hott-2013} gives an ``interface'' for quasi-inverse. At the same place \cite{hott-2013} gives an ``interface'' for
what an equivalence $\isEquiv : (A \to B) \to \MCU$ must supply: what an equivalence $\isEquiv \tp (A \to B) \to \MCU$ must supply:
% %
\begin{itemize} \begin{itemize}
\item \item
@ -264,11 +264,11 @@ how to work with equivalences and 2) to use ad-hoc definitions of equivalences.
The specific instantiation of $\isEquiv$ as defined in \cite{cubical-agda} is: The specific instantiation of $\isEquiv$ as defined in \cite{cubical-agda} is:
% %
$$ $$
isEquiv\ f \defeq \prod_{b : B} \isContr\ (\fiber\ f\ b) isEquiv\ f \defeq \prod_{b \tp B} \isContr\ (\fiber\ f\ b)
$$ $$
where where
$$ $$
\fiber\ f\ b \defeq \sum_{a \tp A} b \equiv f\ a \fiber\ f\ b \defeq \sum_{a \tp A} \left( b \equiv f\ a \right)
$$ $$
% %
I give it's definition here mainly for completeness, because as I stated we can I give it's definition here mainly for completeness, because as I stated we can
@ -473,7 +473,7 @@ B$ is simply an arrow $f \tp \mathit{Arrow}\ A\ B$ and it's inverse $g \tp
\mathit{Arrow}\ B\ A$. In the opposite category $g$ will play the role of the \mathit{Arrow}\ B\ A$. In the opposite category $g$ will play the role of the
isomorphism and $f$ will be the inverse. Similarly we can go in the opposite isomorphism and $f$ will be the inverse. Similarly we can go in the opposite
direction. I name these maps $\mathit{shuffle} \tp (A \approxeq B) \to (A direction. I name these maps $\mathit{shuffle} \tp (A \approxeq B) \to (A
\approxeq_{\bC} B)$ and $\mathit{shuffle}^{-1} : (A \approxeq_{\bC} B) \to (A \approxeq_{\bC} B)$ and $\mathit{shuffle}^{-1} \tp (A \approxeq_{\bC} B) \to (A
\approxeq B)$ respectively. \approxeq B)$ respectively.
As the inverse of $\idToIso_{\mathit{Op}}$ I will pick $\zeta \defeq \eta \comp As the inverse of $\idToIso_{\mathit{Op}}$ I will pick $\zeta \defeq \eta \comp
@ -670,7 +670,7 @@ proposition and then use $\lemPropF$. So we prove the generalization:
% %
\begin{align} \begin{align}
\label{eq:propAreInversesGen} \label{eq:propAreInversesGen}
\prod_{g : B \to A} \isProp\ (\mathit{AreInverses}\ f\ g) \prod_{g \tp B \to A} \isProp\ (\mathit{AreInverses}\ f\ g)
\end{align} \end{align}
% %
But $\mathit{AreInverses}\ f\ g$ is a pair of equations on arrows, so we use But $\mathit{AreInverses}\ f\ g$ is a pair of equations on arrows, so we use
@ -716,8 +716,6 @@ that there exists a unique arrow $\pi \tp \Arrow\ X\ (A \x B)$ satisfying
%% \prod_{X \tp Object} \prod_{f \tp \Arrow\ X\ A} \prod_{g \tp \Arrow\ X\ B}\\ %% \prod_{X \tp Object} \prod_{f \tp \Arrow\ X\ A} \prod_{g \tp \Arrow\ X\ B}\\
%% \uexists_{f \x g \tp \Arrow\ X\ (A \x B)} %% \uexists_{f \x g \tp \Arrow\ X\ (A \x B)}
\pi_1 \lll \pi \equiv f \x \pi_2 \lll \pi \equiv g \pi_1 \lll \pi \equiv f \x \pi_2 \lll \pi \equiv g
%% ump : ∀ {X : Object} (f : [ X , A ]) (g : [ X , B ])
%% → ∃![ f×g ] ( [ fst ∘ f×g ] ≡ f P.× [ snd ∘ f×g ] ≡ g)
\end{align} \end{align}
% %
$\pi$ is called the product (arrow) of $f$ and $g$. $\pi$ is called the product (arrow) of $f$ and $g$.

View file

@ -5,7 +5,7 @@
\hbox{\scriptsize.}\hbox{\scriptsize.}}}% \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
=} =}
\newcommand{\defeq}{\triangleq} \newcommand{\defeq}{\mathrel{\triangleq}}
%% Alternatively: %% Alternatively:
%% \newcommand{\defeq}{} %% \newcommand{\defeq}{}
\newcommand{\bN}{\mathbb{N}} \newcommand{\bN}{\mathbb{N}}
@ -21,7 +21,7 @@
\newcommand{\comp}{\circ} \newcommand{\comp}{\circ}
\newcommand{\x}{\times} \newcommand{\x}{\times}
\newcommand\inv[1]{#1\raisebox{1.15ex}{$\scriptscriptstyle-\!1$}} \newcommand\inv[1]{#1\raisebox{1.15ex}{$\scriptscriptstyle-\!1$}}
\newcommand{\tp}{\;\mathord{:}\;} \newcommand{\tp}{\mathrel{:}}
\newcommand{\Type}{\mathcal{U}} \newcommand{\Type}{\mathcal{U}}
\usepackage{graphicx} \usepackage{graphicx}

View file

@ -4,7 +4,7 @@
\input{packages.tex} \input{packages.tex}
\input{macros.tex} \input{macros.tex}
\title{Univalent Categories in Cubical Agda} \title{Univalent Categories}
\author{Frederik Hanghøj Iversen} \author{Frederik Hanghøj Iversen}
%% \usepackage[ %% \usepackage[
@ -26,7 +26,7 @@
%% researchgroup=Programming Logic Group %% researchgroup=Programming Logic Group
%% ]{chalmerstitle} %% ]{chalmerstitle}
\usepackage{chalmerstitle} \usepackage{chalmerstitle}
\subtitle{} \subtitle{A formalization of category theory in Cubical Agda}
\authoremail{hanghj@student.chalmers.se} \authoremail{hanghj@student.chalmers.se}
\newcommand{\chalmers}{Chalmers University of Technology} \newcommand{\chalmers}{Chalmers University of Technology}
\supervisor{Thierry Coquand} \supervisor{Thierry Coquand}

View file

@ -15,7 +15,7 @@
\usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym} \usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym}
\usepackage[toc,page]{appendix} \usepackage[toc,page]{appendix}
\usepackage{xspace} \usepackage{xspace}
%% \usepackage{geometry} \usepackage{geometry}
% \setlength{\parskip}{10pt} % \setlength{\parskip}{10pt}