Merge branch 'Saizan-dev-yoneda'
This commit is contained in:
commit
eae441b659
|
@ -6,7 +6,7 @@ consisting of the proposal for the thesis).
|
||||||
Installation
|
Installation
|
||||||
============
|
============
|
||||||
You probably need a very recent version of the Agda compiler. At the time
|
You probably need a very recent version of the Agda compiler. At the time
|
||||||
of writing the solution has been tested with Agda version 2.6.0-9af3e07.
|
of writing the solution has been tested with Agda version 2.6.0-5d84754.
|
||||||
|
|
||||||
Dependencies
|
Dependencies
|
||||||
------------
|
------------
|
||||||
|
|
|
@ -34,8 +34,6 @@ module _ (ℓ ℓ' : Level) where
|
||||||
(λ i → {x y : A .Object} → A .Arrow x y → D .Arrow (eq* i x) (eq* i y))
|
(λ i → {x y : A .Object} → A .Arrow x y → D .Arrow (eq* i x) (eq* i y))
|
||||||
(func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f))
|
(func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f))
|
||||||
eq→ = refl
|
eq→ = refl
|
||||||
id-l = (h ∘f (g ∘f f)) .ident -- = func→ (h ∘f (g ∘f f)) (𝟙 A) ≡ 𝟙 D
|
|
||||||
id-r = ((h ∘f g) ∘f f) .ident -- = func→ ((h ∘f g) ∘f f) (𝟙 A) ≡ 𝟙 D
|
|
||||||
postulate eqI : PathP
|
postulate eqI : PathP
|
||||||
(λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ D .𝟙 {eq* i c})
|
(λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ D .𝟙 {eq* i c})
|
||||||
(ident ((h ∘f (g ∘f f))))
|
(ident ((h ∘f (g ∘f f))))
|
||||||
|
|
|
@ -52,12 +52,12 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open Category
|
open Category
|
||||||
open import Cat.Categories.Cat using (Cat)
|
open import Cat.Categories.Cat using (Cat)
|
||||||
|
open import Cat.Categories.Fun
|
||||||
|
open import Cat.Categories.Sets
|
||||||
module Cat = Cat.Categories.Cat
|
module Cat = Cat.Categories.Cat
|
||||||
open Exponential
|
open Exponential
|
||||||
private
|
private
|
||||||
Catℓ = Cat ℓ ℓ
|
Catℓ = Cat ℓ ℓ
|
||||||
CatHasExponentials : HasExponentials Catℓ
|
|
||||||
CatHasExponentials = Cat.hasExponentials ℓ
|
|
||||||
|
|
||||||
-- Exp : Set (lsuc (lsuc ℓ))
|
-- Exp : Set (lsuc (lsuc ℓ))
|
||||||
-- Exp = Exponential (Cat (lsuc ℓ) ℓ)
|
-- Exp = Exponential (Cat (lsuc ℓ) ℓ)
|
||||||
|
@ -66,18 +66,26 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
||||||
_⇑_ : (A B : Catℓ .Object) → Catℓ .Object
|
_⇑_ : (A B : Catℓ .Object) → Catℓ .Object
|
||||||
A ⇑ B = (exponent A B) .obj
|
A ⇑ B = (exponent A B) .obj
|
||||||
where
|
where
|
||||||
open HasExponentials CatHasExponentials
|
open HasExponentials (Cat.hasExponentials ℓ)
|
||||||
|
|
||||||
private
|
-- private
|
||||||
-- I need `Sets` to be a `Category ℓ ℓ` but it simlpy isn't.
|
-- -- I need `Sets` to be a `Category ℓ ℓ` but it simlpy isn't.
|
||||||
Setz : Category ℓ ℓ
|
-- Setz : Category ℓ ℓ
|
||||||
Setz = {!Sets!}
|
-- Setz = {!Sets!}
|
||||||
:func*: : ℂ .Object → (Setz ⇑ Opposite ℂ) .Object
|
-- :func*: : ℂ .Object → (Setz ⇑ Opposite ℂ) .Object
|
||||||
:func*: A = {!!}
|
-- :func*: A = {!!}
|
||||||
|
|
||||||
yoneda : Functor ℂ (Setz ⇑ (Opposite ℂ))
|
-- prsh = presheaf {ℂ = ℂ}
|
||||||
|
-- k = prsh {!!}
|
||||||
|
-- :func*:' : ℂ .Object → Presheaf ℂ
|
||||||
|
-- :func*:' = prsh
|
||||||
|
-- module _ {A B : ℂ .Object} (f : ℂ .Arrow A B) where
|
||||||
|
-- open import Cat.Categories.Fun
|
||||||
|
-- :func→:' : NaturalTransformation (prsh A) (prsh B)
|
||||||
|
|
||||||
|
yoneda : Functor ℂ (Fun {ℂ = Opposite ℂ} {𝔻 = Sets {ℓ}})
|
||||||
yoneda = record
|
yoneda = record
|
||||||
{ func* = :func*:
|
{ func* = presheaf {ℂ = ℂ}
|
||||||
; func→ = {!!}
|
; func→ = {!!}
|
||||||
; ident = {!!}
|
; ident = {!!}
|
||||||
; distrib = {!!}
|
; distrib = {!!}
|
||||||
|
|
Loading…
Reference in a new issue