Add PathPrelude
This commit is contained in:
parent
0f114b1029
commit
f27492217d
293
src/PathPrelude.agda
Normal file
293
src/PathPrelude.agda
Normal file
|
@ -0,0 +1,293 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
module PathPrelude where
|
||||
|
||||
open import Primitives public
|
||||
open import Level
|
||||
open import Data.Product using (Σ; _,_) renaming (proj₁ to fst; proj₂ to snd)
|
||||
|
||||
refl : ∀ {a} {A : Set a} {x : A} → Path x x
|
||||
refl {x = x} = λ i → x
|
||||
|
||||
sym : ∀ {a} {A : Set a} → {x y : A} → Path x y → Path y x
|
||||
sym p = \ i → p (~ i)
|
||||
|
||||
pathJ : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Path x y → Set p) → P x ((\ i -> x)) → ∀ y (p : Path x y) → P y p
|
||||
pathJ P d _ p = primComp (λ i → P (p i) (\ j → p (i ∧ j))) i0 (\ _ → empty) d
|
||||
|
||||
|
||||
pathJprop : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Path x y → Set p) → (d : P x ((\ i -> x))) → pathJ P d _ refl ≡ d
|
||||
pathJprop {x = x} P d i = primComp (λ _ → P x refl) i (\ { j (i = i1) → d }) d
|
||||
|
||||
|
||||
trans : ∀ {a} {A : Set a} → {x y z : A} → Path x y → Path y z → Path x z
|
||||
trans {A = A} {x} {y} p q = \ i → primComp (λ j → A) (i ∨ ~ i)
|
||||
(\ j → \ { (i = i1) → q j
|
||||
; (i = i0) → x
|
||||
}
|
||||
)
|
||||
(p i)
|
||||
|
||||
fun-ext : ∀ {a b} {A : Set a} {B : A → Set b} → {f g : (x : A) → B x}
|
||||
→ (∀ x → Path (f x) (g x)) → Path f g
|
||||
fun-ext p = λ i x → p x i
|
||||
|
||||
|
||||
-- comp using only Path
|
||||
compP : ∀ {a : Level} {A0 A1 : Set a} (A : Path A0 A1) → {φ : I} → (a0 : A i0) → (Partial (Σ A1 \ y → PathP (\ i → A i) a0 y) φ) → A i1
|
||||
compP A {φ} a0 p = primComp (λ i → A i) φ (\ i o → p o .snd i) a0
|
||||
|
||||
-- fill using only Path
|
||||
|
||||
fillP : ∀ {a : Level} {A0 A1 : Set a} (A : Path A0 A1) → {φ : I} → (a0 : A i0) → (Partial (Σ A1 \ y → PathP (\ i → A i) a0 y) φ) → ∀ i → A i
|
||||
fillP A {φ} a0 p j = primComp (λ i → A (i ∧ j)) (φ ∨ ~ j) (\ { i (φ = i1) → p itIsOne .snd (i ∧ j); i (j = i0) → a0 }) a0
|
||||
|
||||
|
||||
reflId : ∀ {a} {A : Set a}{x : A} → Id x x
|
||||
reflId {x = x} = conid i1 (λ _ → x)
|
||||
|
||||
Jdef : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Id x y → Set p) → (d : P x reflId) → J P d reflId ≡ d
|
||||
Jdef P d = refl
|
||||
|
||||
fromPath : ∀ {A : Set}{x y : A} → Path x y -> Id x y
|
||||
fromPath p = conid i0 (\ i → p i)
|
||||
|
||||
transId : ∀ {a} {A : Set a} → {x y z : A} → Id x y → Id y z → Id x z
|
||||
transId {A = A} {x} {y} p = J (λ y _ → Id x y) p
|
||||
|
||||
congId : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → ∀ {x y} → Id x y → Id (f x) (f y)
|
||||
congId f {x} {y} = J (λ y _ → Id (f x) (f y)) reflId
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
fill : ∀ {a : I -> Level} (A : (i : I) → Set (a i)) (φ : I) → ((i : I) → Partial (A i) φ) → A i0 → (i : I) → A i
|
||||
fill A φ u a0 i = unsafeComp (\ j → A (i ∧ j)) (φ ∨ ~ i) (\ j → unsafePOr φ (~ i) (u (i ∧ j)) \ { _ → a0 }) a0
|
||||
|
||||
singl : ∀ {l} {A : Set l} (a : A) -> Set l
|
||||
singl {A = A} a = Σ A (\ x → a ≡ x)
|
||||
|
||||
contrSingl : ∀ {l} {A : Set l} {a b : A} (p : a ≡ b) → Path {A = singl a} (a , refl) (b , p)
|
||||
contrSingl p = \ i → ((p i) , \ j → p (i ∧ j))
|
||||
|
||||
|
||||
module Contr where
|
||||
|
||||
isContr : ∀ {a} → (A : Set a) → Set a
|
||||
isContr A = Σ A (\ x → ∀ y → x ≡ y)
|
||||
|
||||
contr : ∀ {a} {A : Set a} → isContr A → (φ : I) → (u : Partial A φ) → A
|
||||
contr {A = A} (c , p) φ u = primComp (\ _ → A) φ (λ i → \ o → p (u o) i) c
|
||||
|
||||
lemma : ∀ {a} {A : Set a}
|
||||
→ (contr1 : ∀ φ → Partial A φ → A)
|
||||
→ (contr2 : ∀ u → u ≡ (contr1 i1 \{_ → u}))
|
||||
→ isContr A
|
||||
lemma {A = A} contr1 contr2 = x , (λ y → let module M = R y in trans (contr2 x) (trans (\ i → M.v i) (sym (contr2 y)))) where
|
||||
x = contr1 i0 empty
|
||||
module R (y : A) (i : I) where
|
||||
φ = ~ i ∨ i
|
||||
u : Partial A φ
|
||||
u = primPOr (~ i) i (\{_ → x}) (\{_ → y})
|
||||
v = contr1 φ u
|
||||
|
||||
isContrProp : ∀ {a} {A : Set a} (h : isContr A) -> ∀ (x y : A) → x ≡ y
|
||||
isContrProp {A = A} h a b = \ i → primComp (\ _ → A) _ (\ j → [ (~ i) ↦ (\{_ → snd h a j}) , i ↦ (\{_ → snd h b j}) ]) (fst h)
|
||||
|
||||
module Pres {la lb : I → _} {T : (i : I) → Set (lb i)}{A : (i : I) → Set (la i)} (f : ∀ i → T i → A i) (φ : I) (t : ∀ i → Partial (T i) φ)
|
||||
(t0 : T i0 {- [ φ ↦ t i0 ] -}) where
|
||||
|
||||
c1 c2 : A i1
|
||||
c1 = unsafeComp A φ (λ i → (\{_ → f i (t i itIsOne) })) (f i0 t0)
|
||||
c2 = f i1 (unsafeComp T φ t t0)
|
||||
|
||||
a0 = f i0 t0
|
||||
|
||||
a : ∀ i → Partial (A i) φ
|
||||
a i = (\{_ → f i ((t i) itIsOne) })
|
||||
|
||||
u : ∀ i → A i
|
||||
u = fill A φ a a0
|
||||
|
||||
v : ∀ i → T i
|
||||
v = fill T φ t t0
|
||||
|
||||
pres : Path c1 c2
|
||||
pres = \ j → unsafeComp A (φ ∨ (j ∨ ~ j)) (λ i → primPOr φ ((j ∨ ~ j)) (a i) (primPOr j (~ j) (\{_ → f i (v i) }) (\{_ → u i }))) a0
|
||||
|
||||
module Equiv {l l'} (A : Set l)(B : Set l') where
|
||||
isEquiv : (A -> B) → Set (l' ⊔ l)
|
||||
isEquiv f = ∀ y → Contr.isContr (Σ A \ x → y ≡ f x)
|
||||
|
||||
Equiv = Σ _ isEquiv
|
||||
|
||||
equiv : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → PartialP φ (\ o → Path a (fst f (t o)))
|
||||
-> Σ A \ x → a ≡ fst f x -- [ φ ↦ (t , \ j → a) ]
|
||||
equiv (f , [f]) φ t a p = Contr.contr ([f] a) φ \ o → t o , (\ i → p o i)
|
||||
|
||||
equiv1 : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → PartialP φ (\ o → Path a (fst f (t o))) -> A
|
||||
equiv1 f φ t a p = fst (equiv f φ t a p)
|
||||
|
||||
equiv2 : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → (p : PartialP φ (\ o → Path a (fst f (t o))))
|
||||
→ a ≡ fst f (equiv1 f φ t a p)
|
||||
equiv2 f φ t a p = snd (equiv f φ t a p)
|
||||
|
||||
open Equiv public
|
||||
|
||||
{-# BUILTIN ISEQUIV isEquiv #-}
|
||||
|
||||
idEquiv : ∀ {a} {A : Set a} → Equiv A A
|
||||
idEquiv = (λ x → x) , (λ y → (y , refl) , (λ y₁ → contrSingl (snd y₁)))
|
||||
|
||||
|
||||
pathToEquiv : ∀ {l : I → _} (E : (i : I) → Set (l i)) → Equiv (E i0) (E i1)
|
||||
pathToEquiv E = f
|
||||
, (λ y → (g y
|
||||
, (\ j → primComp E (~ j ∨ j) (\ i → [ ~ j ↦ (\{_ → v i y }) , j ↦ (\{_ → u i (g y) }) ]) (g y))) ,
|
||||
prop-f-image y _ )
|
||||
where
|
||||
A = E i0
|
||||
B = E i1
|
||||
transp : ∀ {l : I → _} (E : (i : I) → Set (l i)) → E i0 → E i1
|
||||
transp E x = primComp E i0 (\ _ → empty) x
|
||||
f : A → B
|
||||
f = transp E
|
||||
g : B → A
|
||||
g = transp (\ i → E (~ i))
|
||||
u : (i : I) → A → E i
|
||||
u i x = fill E i0 (\ _ → empty) x i
|
||||
v : (i : I) → B → E i
|
||||
v i y = fill (\ i → E (~ i)) i0 (\ _ → empty) y (~ i)
|
||||
prop-f-image : (y : B) → (a b : Σ _ \ x → y ≡ f x) → a ≡ b
|
||||
prop-f-image y (x0 , b0) (x1 , b1) = \ k → (w k) , (\ j → d j k)
|
||||
where
|
||||
w0 = \ (j : I) → primComp (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x0 }) ])) (b0 j)
|
||||
w1 = \ (j : I) → primComp (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x1 }) ])) (b1 j)
|
||||
t0 = \ (j : I) → fill (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x0 }) ])) (b0 j)
|
||||
t1 = \ (j : I) → fill (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x1 }) ])) (b1 j)
|
||||
w = \ (k : I) → primComp (λ _ → A) (~ k ∨ k) (\ j → [ ~ k ↦ (\{_ → w0 j }) , k ↦ (\{_ → w1 j }) ]) (g y)
|
||||
t = \ (j k : I) → fill (λ _ → A) (~ k ∨ k) (\ j → [ ~ k ↦ (\{_ → w0 j }) , k ↦ (\{_ → w1 j }) ]) (g y) j
|
||||
d = \ (j k : I) → primComp E ((~ k ∨ k) ∨ (~ j ∨ j)) ((\ i → [ ~ k ∨ k ↦ [ ~ k ↦ (\{_ → t0 j (~ i) }) , k ↦ (\{_ → t1 j (~ i) }) ]
|
||||
, ~ j ∨ j ↦ [ ~ j ↦ (\{_ → v (i) y }) , j ↦ (\{_ → u (i) (w k) }) ] ])) (t j k)
|
||||
|
||||
pathToEquiv2 : ∀ {l : I → _} (E : (i : I) → Set (l i)) → _
|
||||
pathToEquiv2 {l} E = snd (pathToEquiv E)
|
||||
|
||||
{-# BUILTIN PATHTOEQUIV pathToEquiv2 #-}
|
||||
|
||||
module GluePrims where
|
||||
primitive
|
||||
primGlue : ∀ {a b} (A : Set a) → ∀ φ → (T : Partial (Set b) φ) → (f : PartialP φ (λ o → T o → A))
|
||||
→ (pf : PartialP φ (λ o → isEquiv (T o) A (f o))) → Set b
|
||||
prim^glue : ∀ {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
|
||||
{f : PartialP φ (λ o → T o → A)}
|
||||
{pf : PartialP φ (λ o → isEquiv (T o) A (f o))} →
|
||||
PartialP φ T → A → primGlue A φ T f pf
|
||||
prim^unglue : ∀ {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
|
||||
{f : PartialP φ (λ o → T o → A)}
|
||||
{pf : PartialP φ (λ o → isEquiv (T o) A (f o))} →
|
||||
primGlue A φ T f pf → A
|
||||
|
||||
|
||||
module GluePrims' (dummy : Set₁) = GluePrims
|
||||
open GluePrims' Set using () renaming (prim^glue to unsafeGlue) public
|
||||
|
||||
open GluePrims public renaming (prim^glue to glue; prim^unglue to unglue)
|
||||
|
||||
Glue : ∀ {a b} (A : Set a) → ∀ φ → (T : Partial (Set b) φ) (f : (PartialP φ \ o → Equiv (T o) A)) → Set _
|
||||
Glue A φ T f = primGlue A φ T (\ o → fst (f o)) (\ o → snd (f o))
|
||||
|
||||
eqToPath' : ∀ {l} {A B : Set l} → Equiv A B → Path A B
|
||||
eqToPath' {l} {A} {B} f = \ i → Glue B (~ i ∨ i) ([ ~ i ↦ (\ _ → A) , i ↦ (\ _ → B) ]) ([ ~ i ↦ (\{_ → f }) , i ↦ (\{_ → idEquiv }) ])
|
||||
|
||||
primitive
|
||||
primFaceForall : (I → I) → I
|
||||
|
||||
module FR (φ : I -> I) where
|
||||
δ = primFaceForall φ
|
||||
postulate
|
||||
∀e : IsOne δ → ∀ i → IsOne (φ i)
|
||||
∀∨ : ∀ i → IsOne (φ i) → IsOne ((δ ∨ (φ i0 ∧ ~ i)) ∨ (φ i1 ∧ i))
|
||||
|
||||
module GlueIso {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ} {f : (PartialP φ \ o → Equiv (T o) A)} where
|
||||
going : PartialP φ (\ o → Glue A φ T f → T o)
|
||||
going = (\{_ → (\ x → x) })
|
||||
back : PartialP φ (\ o → T o → Glue A φ T f)
|
||||
back = (\{_ → (\ x → x) })
|
||||
|
||||
lemma : ∀ (b : PartialP φ (\ _ → Glue A φ T f)) → PartialP φ \ o → Path (unglue {φ = φ} (b o)) (fst (f o) (going o (b o)))
|
||||
lemma b = (\{_ → refl })
|
||||
|
||||
module CompGlue {la lb : I → _} (A : (i : I) → Set (la i)) (φ : I -> I) (T : ∀ i → Partial (Set (lb i)) (φ i))
|
||||
(f : ∀ i → PartialP (φ i) \ o → Equiv (T i o) (A i)) where
|
||||
B : (i : I) -> Set (lb i)
|
||||
B = \ i → Glue (A i) (φ i) (T i) (f i)
|
||||
module Local (ψ : I) (b : ∀ i → Partial (B i) ψ) (b0 : B i0 {- [ ψ ↦ b i0 ] -}) where
|
||||
a : ∀ i → Partial (A i) ψ
|
||||
a i = \ o → unglue {φ = φ i} (b i o)
|
||||
module Forall (δ : I) (∀e : IsOne δ → ∀ i → IsOne (φ i)) where
|
||||
a0 : A i0
|
||||
a0 = unglue {φ = φ i0} b0
|
||||
a₁' = unsafeComp A ψ a a0
|
||||
t₁' : PartialP δ (\ o → T i1 (∀e o i1))
|
||||
t₁' = \ o → unsafeComp (λ i → T i (∀e o i)) ψ (\ i o' → GlueIso.going {φ = φ i} (∀e o i) (b i o')) (GlueIso.going {φ = φ i0} (∀e o i0) b0)
|
||||
w : PartialP δ _
|
||||
w = \ o → Pres.pres (\ i → fst (f i (∀e o i))) ψ (λ i x → GlueIso.going {φ = φ i} (∀e o i) (b i x)) (GlueIso.going {φ = φ i0} (∀e o i0) b0)
|
||||
a₁'' = unsafeComp (\ _ → A i1) (δ ∨ ψ) (\ j → unsafePOr δ ψ (\ o → w o j) (a i1)) a₁'
|
||||
g : PartialP (φ i1) _
|
||||
g o = (equiv (T i1 _) (A i1) (f i1 o) (δ ∨ ψ) (unsafePOr δ ψ t₁' (\ o' → GlueIso.going {φ = φ i1} o (b i1 o'))) a₁''
|
||||
( (unsafePOr δ ψ (\{ (δ = i1) → refl }) ((\{ (ψ = i1) → GlueIso.lemma {φ = φ i1} (\ _ → b i1 itIsOne) o }) ) ) ))
|
||||
-- TODO figure out why we need (δ = i1) and (ψ = i1) here
|
||||
t₁ : PartialP (φ i1) _
|
||||
t₁ o = fst (g o)
|
||||
α : PartialP (φ i1) _
|
||||
α o = snd (g o)
|
||||
a₁ = unsafeComp (\ j → A i1) (φ i1 ∨ ψ) (\ j → unsafePOr (φ i1) ψ (\ o → α o j) (a i1)) a₁''
|
||||
b₁ : Glue _ (φ i1) (T i1) (f i1)
|
||||
b₁ = unsafeGlue {φ = φ i1} t₁ a₁
|
||||
b1 = Forall.b₁ (FR.δ φ) (FR.∀e φ)
|
||||
|
||||
compGlue : {la lb : I → _} (A : (i : I) → Set (la i)) (φ : I -> I) (T : ∀ i → Partial (Set (lb i)) (φ i))
|
||||
(f : ∀ i → PartialP (φ i) \ o → (T i o) → (A i)) →
|
||||
(pf : ∀ i → PartialP (φ i) (λ o → isEquiv (T i o) (A i) (f i o))) →
|
||||
let
|
||||
B : (i : I) -> Set (lb i)
|
||||
B = \ i → primGlue (A i) (φ i) (T i) (f i) (pf i)
|
||||
in (ψ : I) (b : ∀ i → Partial (B i) ψ) (b0 : B i0) → B i1
|
||||
compGlue A φ T f pf ψ b b0 = CompGlue.Local.b1 A φ T (λ i p → (f i p) , (pf i p)) ψ b b0
|
||||
|
||||
|
||||
{-# BUILTIN COMPGLUE compGlue #-}
|
||||
|
||||
module ≡-Reasoning {a} {A : Set a} where
|
||||
|
||||
infix 3 _∎
|
||||
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ -- _≅⟨_⟩_
|
||||
infix 1 begin_
|
||||
|
||||
begin_ : ∀{x y : A} → x ≡ y → x ≡ y
|
||||
begin_ x≡y = x≡y
|
||||
|
||||
_≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y
|
||||
_ ≡⟨⟩ x≡y = x≡y
|
||||
|
||||
_≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
|
||||
_ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
|
||||
|
||||
-- _≅⟨_⟩_ : ∀ (x {y z} : A) → x ≅ y → y ≡ z → x ≡ z
|
||||
-- _ ≅⟨ x≅y ⟩ y≡z = trans (H.≅-to-≡ x≅y) y≡z
|
||||
|
||||
_∎ : ∀ (x : A) → x ≡ x
|
||||
_∎ _ = refl
|
Loading…
Reference in a new issue