Add PathPrelude

This commit is contained in:
Frederik Hanghøj Iversen 2017-06-07 22:31:17 +02:00
parent 0f114b1029
commit f27492217d
1 changed files with 293 additions and 0 deletions

293
src/PathPrelude.agda Normal file
View File

@ -0,0 +1,293 @@
{-# OPTIONS --cubical #-}
module PathPrelude where
open import Primitives public
open import Level
open import Data.Product using (Σ; _,_) renaming (proj₁ to fst; proj₂ to snd)
refl : {a} {A : Set a} {x : A} Path x x
refl {x = x} = λ i x
sym : {a} {A : Set a} {x y : A} Path x y Path y x
sym p = \ i p (~ i)
pathJ : {a}{p}{A : Set a}{x : A}(P : y Path x y Set p) P x ((\ i -> x)) y (p : Path x y) P y p
pathJ P d _ p = primComp (λ i P (p i) (\ j p (i j))) i0 (\ _ empty) d
pathJprop : {a}{p}{A : Set a}{x : A}(P : y Path x y Set p) (d : P x ((\ i -> x))) pathJ P d _ refl d
pathJprop {x = x} P d i = primComp (λ _ P x refl) i (\ { j (i = i1) d }) d
trans : {a} {A : Set a} {x y z : A} Path x y Path y z Path x z
trans {A = A} {x} {y} p q = \ i primComp (λ j A) (i ~ i)
(\ j \ { (i = i1) q j
; (i = i0) x
}
)
(p i)
fun-ext : {a b} {A : Set a} {B : A Set b} {f g : (x : A) B x}
( x Path (f x) (g x)) Path f g
fun-ext p = λ i x p x i
-- comp using only Path
compP : {a : Level} {A0 A1 : Set a} (A : Path A0 A1) {φ : I} (a0 : A i0) (Partial (Σ A1 \ y PathP (\ i A i) a0 y) φ) A i1
compP A {φ} a0 p = primComp (λ i A i) φ (\ i o p o .snd i) a0
-- fill using only Path
fillP : {a : Level} {A0 A1 : Set a} (A : Path A0 A1) {φ : I} (a0 : A i0) (Partial (Σ A1 \ y PathP (\ i A i) a0 y) φ) i A i
fillP A {φ} a0 p j = primComp (λ i A (i j)) (φ ~ j) (\ { i (φ = i1) p itIsOne .snd (i j); i (j = i0) a0 }) a0
reflId : {a} {A : Set a}{x : A} Id x x
reflId {x = x} = conid i1 (λ _ x)
Jdef : {a}{p}{A : Set a}{x : A}(P : y Id x y Set p) (d : P x reflId) J P d reflId d
Jdef P d = refl
fromPath : {A : Set}{x y : A} Path x y -> Id x y
fromPath p = conid i0 (\ i p i)
transId : {a} {A : Set a} {x y z : A} Id x y Id y z Id x z
transId {A = A} {x} {y} p = J (λ y _ Id x y) p
congId : {a b} {A : Set a} {B : Set b} (f : A B) {x y} Id x y Id (f x) (f y)
congId f {x} {y} = J (λ y _ Id (f x) (f y)) reflId
fill : {a : I -> Level} (A : (i : I) Set (a i)) (φ : I) ((i : I) Partial (A i) φ) A i0 (i : I) A i
fill A φ u a0 i = unsafeComp (\ j A (i j)) (φ ~ i) (\ j unsafePOr φ (~ i) (u (i j)) \ { _ a0 }) a0
singl : {l} {A : Set l} (a : A) -> Set l
singl {A = A} a = Σ A (\ x a x)
contrSingl : {l} {A : Set l} {a b : A} (p : a b) Path {A = singl a} (a , refl) (b , p)
contrSingl p = \ i ((p i) , \ j p (i j))
module Contr where
isContr : {a} (A : Set a) Set a
isContr A = Σ A (\ x y x y)
contr : {a} {A : Set a} isContr A (φ : I) (u : Partial A φ) A
contr {A = A} (c , p) φ u = primComp (\ _ A) φ (λ i \ o p (u o) i) c
lemma : {a} {A : Set a}
(contr1 : φ Partial A φ A)
(contr2 : u u (contr1 i1 \{_ u}))
isContr A
lemma {A = A} contr1 contr2 = x , (λ y let module M = R y in trans (contr2 x) (trans (\ i M.v i) (sym (contr2 y)))) where
x = contr1 i0 empty
module R (y : A) (i : I) where
φ = ~ i i
u : Partial A φ
u = primPOr (~ i) i (\{_ x}) (\{_ y})
v = contr1 φ u
isContrProp : {a} {A : Set a} (h : isContr A) -> (x y : A) x y
isContrProp {A = A} h a b = \ i primComp (\ _ A) _ (\ j [ (~ i) (\{_ snd h a j}) , i (\{_ snd h b j}) ]) (fst h)
module Pres {la lb : I _} {T : (i : I) Set (lb i)}{A : (i : I) Set (la i)} (f : i T i A i) (φ : I) (t : i Partial (T i) φ)
(t0 : T i0 {- [ φ ↦ t i0 ] -}) where
c1 c2 : A i1
c1 = unsafeComp A φ (λ i (\{_ f i (t i itIsOne) })) (f i0 t0)
c2 = f i1 (unsafeComp T φ t t0)
a0 = f i0 t0
a : i Partial (A i) φ
a i = (\{_ f i ((t i) itIsOne) })
u : i A i
u = fill A φ a a0
v : i T i
v = fill T φ t t0
pres : Path c1 c2
pres = \ j unsafeComp A (φ (j ~ j)) (λ i primPOr φ ((j ~ j)) (a i) (primPOr j (~ j) (\{_ f i (v i) }) (\{_ u i }))) a0
module Equiv {l l'} (A : Set l)(B : Set l') where
isEquiv : (A -> B) Set (l' l)
isEquiv f = y Contr.isContr (Σ A \ x y f x)
Equiv = Σ _ isEquiv
equiv : (f : Equiv) φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) PartialP φ (\ o Path a (fst f (t o)))
-> Σ A \ x a fst f x -- [ φ ↦ (t , \ j → a) ]
equiv (f , [f]) φ t a p = Contr.contr ([f] a) φ \ o t o , (\ i p o i)
equiv1 : (f : Equiv) φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) PartialP φ (\ o Path a (fst f (t o))) -> A
equiv1 f φ t a p = fst (equiv f φ t a p)
equiv2 : (f : Equiv) φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) (p : PartialP φ (\ o Path a (fst f (t o))))
a fst f (equiv1 f φ t a p)
equiv2 f φ t a p = snd (equiv f φ t a p)
open Equiv public
{-# BUILTIN ISEQUIV isEquiv #-}
idEquiv : {a} {A : Set a} Equiv A A
idEquiv = (λ x x) , (λ y (y , refl) , (λ y₁ contrSingl (snd y₁)))
pathToEquiv : {l : I _} (E : (i : I) Set (l i)) Equiv (E i0) (E i1)
pathToEquiv E = f
, (λ y (g y
, (\ j primComp E (~ j j) (\ i [ ~ j (\{_ v i y }) , j (\{_ u i (g y) }) ]) (g y))) ,
prop-f-image y _ )
where
A = E i0
B = E i1
transp : {l : I _} (E : (i : I) Set (l i)) E i0 E i1
transp E x = primComp E i0 (\ _ empty) x
f : A B
f = transp E
g : B A
g = transp (\ i E (~ i))
u : (i : I) A E i
u i x = fill E i0 (\ _ empty) x i
v : (i : I) B E i
v i y = fill (\ i E (~ i)) i0 (\ _ empty) y (~ i)
prop-f-image : (y : B) (a b : Σ _ \ x y f x) a b
prop-f-image y (x0 , b0) (x1 , b1) = \ k (w k) , (\ j d j k)
where
w0 = \ (j : I) primComp (\ i E (~ i)) (~ j j) ((\ i [ ~ j (\{_ v (~ i) y }) , j (\{_ u (~ i) x0 }) ])) (b0 j)
w1 = \ (j : I) primComp (\ i E (~ i)) (~ j j) ((\ i [ ~ j (\{_ v (~ i) y }) , j (\{_ u (~ i) x1 }) ])) (b1 j)
t0 = \ (j : I) fill (\ i E (~ i)) (~ j j) ((\ i [ ~ j (\{_ v (~ i) y }) , j (\{_ u (~ i) x0 }) ])) (b0 j)
t1 = \ (j : I) fill (\ i E (~ i)) (~ j j) ((\ i [ ~ j (\{_ v (~ i) y }) , j (\{_ u (~ i) x1 }) ])) (b1 j)
w = \ (k : I) primComp (λ _ A) (~ k k) (\ j [ ~ k (\{_ w0 j }) , k (\{_ w1 j }) ]) (g y)
t = \ (j k : I) fill (λ _ A) (~ k k) (\ j [ ~ k (\{_ w0 j }) , k (\{_ w1 j }) ]) (g y) j
d = \ (j k : I) primComp E ((~ k k) (~ j j)) ((\ i [ ~ k k [ ~ k (\{_ t0 j (~ i) }) , k (\{_ t1 j (~ i) }) ]
, ~ j j [ ~ j (\{_ v (i) y }) , j (\{_ u (i) (w k) }) ] ])) (t j k)
pathToEquiv2 : {l : I _} (E : (i : I) Set (l i)) _
pathToEquiv2 {l} E = snd (pathToEquiv E)
{-# BUILTIN PATHTOEQUIV pathToEquiv2 #-}
module GluePrims where
primitive
primGlue : {a b} (A : Set a) φ (T : Partial (Set b) φ) (f : PartialP φ (λ o T o A))
(pf : PartialP φ (λ o isEquiv (T o) A (f o))) Set b
prim^glue : {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
{f : PartialP φ (λ o T o A)}
{pf : PartialP φ (λ o isEquiv (T o) A (f o))}
PartialP φ T A primGlue A φ T f pf
prim^unglue : {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
{f : PartialP φ (λ o T o A)}
{pf : PartialP φ (λ o isEquiv (T o) A (f o))}
primGlue A φ T f pf A
module GluePrims' (dummy : Set) = GluePrims
open GluePrims' Set using () renaming (prim^glue to unsafeGlue) public
open GluePrims public renaming (prim^glue to glue; prim^unglue to unglue)
Glue : {a b} (A : Set a) φ (T : Partial (Set b) φ) (f : (PartialP φ \ o Equiv (T o) A)) Set _
Glue A φ T f = primGlue A φ T (\ o fst (f o)) (\ o snd (f o))
eqToPath' : {l} {A B : Set l} Equiv A B Path A B
eqToPath' {l} {A} {B} f = \ i Glue B (~ i i) ([ ~ i (\ _ A) , i (\ _ B) ]) ([ ~ i (\{_ f }) , i (\{_ idEquiv }) ])
primitive
primFaceForall : (I I) I
module FR (φ : I -> I) where
δ = primFaceForall φ
postulate
∀e : IsOne δ i IsOne (φ i)
∀∨ : i IsOne (φ i) IsOne ((δ (φ i0 ~ i)) (φ i1 i))
module GlueIso {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ} {f : (PartialP φ \ o Equiv (T o) A)} where
going : PartialP φ (\ o Glue A φ T f T o)
going = (\{_ (\ x x) })
back : PartialP φ (\ o T o Glue A φ T f)
back = (\{_ (\ x x) })
lemma : (b : PartialP φ (\ _ Glue A φ T f)) PartialP φ \ o Path (unglue {φ = φ} (b o)) (fst (f o) (going o (b o)))
lemma b = (\{_ refl })
module CompGlue {la lb : I _} (A : (i : I) Set (la i)) (φ : I -> I) (T : i Partial (Set (lb i)) (φ i))
(f : i PartialP (φ i) \ o Equiv (T i o) (A i)) where
B : (i : I) -> Set (lb i)
B = \ i Glue (A i) (φ i) (T i) (f i)
module Local (ψ : I) (b : i Partial (B i) ψ) (b0 : B i0 {- [ ψ ↦ b i0 ] -}) where
a : i Partial (A i) ψ
a i = \ o unglue {φ = φ i} (b i o)
module Forall (δ : I) (e : IsOne δ i IsOne (φ i)) where
a0 : A i0
a0 = unglue {φ = φ i0} b0
a₁' = unsafeComp A ψ a a0
t₁' : PartialP δ (\ o T i1 (e o i1))
t₁' = \ o unsafeComp (λ i T i (e o i)) ψ (\ i o' GlueIso.going {φ = φ i} (e o i) (b i o')) (GlueIso.going {φ = φ i0} (e o i0) b0)
w : PartialP δ _
w = \ o Pres.pres (\ i fst (f i (e o i))) ψ (λ i x GlueIso.going {φ = φ i} (e o i) (b i x)) (GlueIso.going {φ = φ i0} (e o i0) b0)
a₁'' = unsafeComp (\ _ A i1) (δ ψ) (\ j unsafePOr δ ψ (\ o w o j) (a i1)) a₁'
g : PartialP (φ i1) _
g o = (equiv (T i1 _) (A i1) (f i1 o) (δ ψ) (unsafePOr δ ψ t₁' (\ o' GlueIso.going {φ = φ i1} o (b i1 o'))) a₁''
( (unsafePOr δ ψ (\{ (δ = i1) refl }) ((\{ (ψ = i1) GlueIso.lemma {φ = φ i1} (\ _ b i1 itIsOne) o }) ) ) ))
-- TODO figure out why we need (δ = i1) and (ψ = i1) here
t₁ : PartialP (φ i1) _
t₁ o = fst (g o)
α : PartialP (φ i1) _
α o = snd (g o)
a₁ = unsafeComp (\ j A i1) (φ i1 ψ) (\ j unsafePOr (φ i1) ψ (\ o α o j) (a i1)) a₁''
b₁ : Glue _ (φ i1) (T i1) (f i1)
b₁ = unsafeGlue {φ = φ i1} t₁ a₁
b1 = Forall.b₁ (FR.δ φ) (FR.∀e φ)
compGlue : {la lb : I _} (A : (i : I) Set (la i)) (φ : I -> I) (T : i Partial (Set (lb i)) (φ i))
(f : i PartialP (φ i) \ o (T i o) (A i))
(pf : i PartialP (φ i) (λ o isEquiv (T i o) (A i) (f i o)))
let
B : (i : I) -> Set (lb i)
B = \ i primGlue (A i) (φ i) (T i) (f i) (pf i)
in (ψ : I) (b : i Partial (B i) ψ) (b0 : B i0) B i1
compGlue A φ T f pf ψ b b0 = CompGlue.Local.b1 A φ T (λ i p (f i p) , (pf i p)) ψ b b0
{-# BUILTIN COMPGLUE compGlue #-}
module ≡-Reasoning {a} {A : Set a} where
infix 3 _∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ -- _≅⟨_⟩_
infix 1 begin_
begin_ : {x y : A} x y x y
begin_ x≡y = x≡y
_≡⟨⟩_ : (x {y} : A) x y x y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : (x {y z} : A) x y y z x z
_ ≡⟨ x≡y y≡z = trans x≡y y≡z
-- _≅⟨_⟩_ : ∀ (x {y z} : A) → x ≅ y → y ≡ z → x ≡ z
-- _ ≅⟨ x≅y ⟩ y≡z = trans (H.≅-to-≡ x≅y) y≡z
_∎ : (x : A) x x
_∎ _ = refl