Finish proof of left and right identity
This commit is contained in:
parent
da0f4a365b
commit
f524f99481
|
@ -67,33 +67,23 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where
|
|||
→ (a , b) ∈ S
|
||||
backwards (a' , (a=a' , a'b∈S)) = subst (sym a=a') a'b∈S
|
||||
|
||||
isbijective : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||||
fwd-bwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||||
-- isbijective x = pathJ (λ y x₁ → (backwards ∘ forwards) x ≡ x) {!!} {!!} {!!}
|
||||
isbijective x = pathJprop (λ y _ → y) x
|
||||
fwd-bwd x = pathJprop (λ y _ → y) x
|
||||
|
||||
postulate
|
||||
back-fwd : (x : Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||
bwd-fwd : (x : Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||
→ (forwards ∘ backwards) x ≡ x
|
||||
-- back-fwd (a , (p , ab∈S))
|
||||
-- = =-ind (λ x y p → {!(forwards ∘ backwards) x ≡ x!}) {!!} {!!} {!!} p
|
||||
-- = pathJprop (λ y _ → snd (snd y)) ab∈S
|
||||
-- has type P x refl where P is the first argument
|
||||
{-
|
||||
-- bwd-fwd (y , a≡y , z) = ?
|
||||
bwd-fwd (a' , a≡y , z) = pathJ lem0 lem1 a' a≡y z
|
||||
where
|
||||
lem0 = (λ a'' a≡a'' → ∀ a''b∈S → (forwards ∘ backwards) (a'' , a≡a'' , a''b∈S) ≡ (a'' , a≡a'' , a''b∈S))
|
||||
lem1 = (λ z₁ → cong (\ z → a , refl , z) (pathJprop (\ y _ → y) z₁))
|
||||
|
||||
module _ {ℓ ℓ'} {A : Set ℓ} {x : A}
|
||||
(P : ∀ y → x ≡ y → Set ℓ') (d : P x ((λ i → x))) where
|
||||
pathJ : (y : A) → (p : x ≡ y) → P y p
|
||||
pathJ _ p = transp (λ i → uncurry P (contrSingl p i)) d
|
||||
|
||||
pathJprop : pathJ _ refl ≡ d
|
||||
pathJprop i = primComp (λ _ → P x refl) i (λ {j (i = i1) → d}) d
|
||||
-}
|
||||
isequiv : isEquiv
|
||||
(Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||
((a , b) ∈ S)
|
||||
backwards
|
||||
-- isequiv ab∈S = (forwards ab∈S , sym (isbijective ab∈S)) , λ y → fiberhelp y
|
||||
isequiv y = gradLemma backwards forwards isbijective back-fwd y
|
||||
isequiv y = gradLemma backwards forwards fwd-bwd bwd-fwd y
|
||||
|
||||
equi : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||
≃ (a , b) ∈ S
|
||||
|
@ -113,18 +103,21 @@ module _ {ℓ ℓ'} {A : Set ℓ} {x : A}
|
|||
→ (a , b) ∈ S
|
||||
backwards (b' , (ab'∈S , b'=b)) = subst b'=b ab'∈S
|
||||
|
||||
isbijective : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||||
isbijective x = pathJprop (λ y _ → y) x
|
||||
bwd-fwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||||
bwd-fwd x = pathJprop (λ y _ → y) x
|
||||
|
||||
fwd-bwd : (x : Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||||
→ (forwards ∘ backwards) x ≡ x
|
||||
fwd-bwd (b , (ab∈S , refl)) = pathJprop (λ y _ → fst (snd y)) ab∈S
|
||||
fwd-bwd (b' , (ab'∈S , b'≡b)) = pathJ lem0 lem1 b' (sym b'≡b) ab'∈S
|
||||
where
|
||||
lem0 = (λ b'' b≡b'' → (ab''∈S : (a , b'') ∈ S) → (forwards ∘ backwards) (b'' , ab''∈S , sym b≡b'') ≡ (b'' , ab''∈S , sym b≡b''))
|
||||
lem1 = (λ ab''∈S → cong (λ φ → b , φ , refl) (pathJprop (λ y _ → y) ab''∈S))
|
||||
|
||||
isequiv : isEquiv
|
||||
(Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||||
((a , b) ∈ S)
|
||||
backwards
|
||||
isequiv ab∈S = gradLemma backwards forwards isbijective fwd-bwd ab∈S
|
||||
isequiv ab∈S = gradLemma backwards forwards bwd-fwd fwd-bwd ab∈S
|
||||
|
||||
equi : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||||
≃ ab ∈ S
|
||||
|
@ -153,7 +146,7 @@ module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where
|
|||
RepFunctor =
|
||||
record
|
||||
{ F = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B
|
||||
; f = λ { {c' = c'} f g → HomFromArrow {ℂ = {!𝕊et-as-Cat!}} c' g}
|
||||
; f = λ { {c' = c'} f g → {!HomFromArrow {ℂ = } c' g!}}
|
||||
; ident = {!!}
|
||||
; distrib = {!!}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue