diff --git a/Makefile b/Makefile index 051f9ce..f2e26be 100644 --- a/Makefile +++ b/Makefile @@ -1,2 +1,5 @@ build: src/**.agda agda src/Cat.agda + +clean: + rm src/**/*.agdai diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index 415b34e..5de99e3 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -6,18 +6,22 @@ open import Agda.Primitive open import Data.Product open import Function using (_∘_) -open import Cubical hiding (_≃_ ; inverse) -open import Cubical.Univalence using (univalence ; con ; _≃_) +-- open import Cubical using (funExt ; refl ; isSet ; isProp ; _≡_ ; isEquiv ; sym ; trans ; _[_≡_] ; I ; Path ; PathP) +open import Cubical hiding (_≃_) +open import Cubical.Univalence using (univalence ; con ; _≃_ ; idtoeqv) open import Cubical.GradLemma open import Cat.Category open import Cat.Category.Functor open import Cat.Category.Product open import Cat.Wishlist -open import Cat.Equivalence as Eqv using (module NoEta) +open import Cat.Equivalence as Eqv renaming (module NoEta to Eeq) using (AreInverses) -module Equivalence = NoEta.Equivalence′ -module Eeq = NoEta +module Equivalence = Eeq.Equivalence′ +postulate + _⊙_ : {ℓa ℓb ℓc : Level} {A : Set ℓa} {B : Set ℓb} {C : Set ℓc} → (A ≃ B) → (B ≃ C) → A ≃ C + sym≃ : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} → A ≃ B → B ≃ A +infixl 10 _⊙_ module _ (ℓ : Level) where private @@ -25,7 +29,7 @@ module _ (ℓ : Level) where open import Cubical.Universe SetsRaw : RawCategory (lsuc ℓ) ℓ - RawCategory.Object SetsRaw = hSet + RawCategory.Object SetsRaw = hSet {ℓ} RawCategory.Arrow SetsRaw (T , _) (U , _) = T → U RawCategory.𝟙 SetsRaw = Function.id RawCategory._∘_ SetsRaw = Function._∘′_ @@ -40,125 +44,95 @@ module _ (ℓ : Level) where arrowsAreSets : ArrowsAreSets arrowsAreSets {B = (_ , s)} = setPi λ _ → s + isIso = Eqv.Isomorphism + module _ {hA hB : hSet {ℓ}} where + open Σ hA renaming (proj₁ to A ; proj₂ to sA) + open Σ hB renaming (proj₁ to B ; proj₂ to sB) + lem1 : (f : A → B) → isSet A → isSet B → isProp (isIso f) + lem1 f sA sB = res + where + module _ (x y : isIso f) where + module x = Σ x renaming (proj₁ to inverse ; proj₂ to areInverses) + module y = Σ y renaming (proj₁ to inverse ; proj₂ to areInverses) + module xA = AreInverses x.areInverses + module yA = AreInverses y.areInverses + -- I had a lot of difficulty using the corresponding proof where + -- AreInverses is defined. This is sadly a bit anti-modular. The + -- reason for my troubles is probably related to the type of objects + -- being hSet's rather than sets. + p : ∀ {f} g → isProp (AreInverses {A = A} {B} f g) + p {f} g xx yy i = record + { verso-recto = ve-re + ; recto-verso = re-ve + } + where + module xxA = AreInverses xx + module yyA = AreInverses yy + ve-re : g ∘ f ≡ Function.id + ve-re = arrowsAreSets {A = hA} {B = hA} _ _ xxA.verso-recto yyA.verso-recto i + re-ve : f ∘ g ≡ Function.id + re-ve = arrowsAreSets {A = hB} {B = hB} _ _ xxA.recto-verso yyA.recto-verso i + 1eq : x.inverse ≡ y.inverse + 1eq = begin + x.inverse ≡⟨⟩ + x.inverse ∘ Function.id ≡⟨ cong (λ φ → x.inverse ∘ φ) (sym yA.recto-verso) ⟩ + x.inverse ∘ (f ∘ y.inverse) ≡⟨⟩ + (x.inverse ∘ f) ∘ y.inverse ≡⟨ cong (λ φ → φ ∘ y.inverse) xA.verso-recto ⟩ + Function.id ∘ y.inverse ≡⟨⟩ + y.inverse ∎ + 2eq : (λ i → AreInverses f (1eq i)) [ x.areInverses ≡ y.areInverses ] + 2eq = lemPropF p 1eq + res : x ≡ y + res i = 1eq i , 2eq i + module _ {ℓa ℓb : Level} {A : Set ℓa} {P : A → Set ℓb} where + postulate + lem2 : ((x : A) → isProp (P x)) → (p q : Σ A P) + → (p ≡ q) ≃ (proj₁ p ≡ proj₁ q) + lem3 : {Q : A → Set ℓb} → ((x : A) → P x ≃ Q x) + → Σ A P ≃ Σ A Q + + module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where + postulate + lem4 : isSet A → isSet B → (f : A → B) + → isEquiv A B f ≃ isIso f + module _ {hA hB : Object} where private A = proj₁ hA - isSetA : isSet A - isSetA = proj₂ hA + sA = proj₂ hA B = proj₁ hB - isSetB : isSet B - isSetB = proj₂ hB + sB = proj₂ hB - toIsomorphism : A ≃ B → hA ≅ hB - toIsomorphism e = obverse , inverse , verso-recto , recto-verso + postulate + -- lem3 and the equivalence from lem4 + step0 : Σ (A → B) isIso ≃ Σ (A → B) (isEquiv A B) + -- univalence + step1 : Σ (A → B) (isEquiv A B) ≃ (A ≡ B) + -- lem2 with propIsSet + step2 : (A ≡ B) ≃ (hA ≡ hB) + -- Go from an isomorphism on sets to an isomorphism on homotopic sets + trivial? : (hA ≅ hB) ≃ Σ (A → B) isIso + trivial? = sym≃ (Eeq.fromIsomorphism res) + where + fwd : Σ (A → B) isIso → hA ≅ hB + fwd (f , g , inv) = f , g , inv.toPair where - open Equivalence e - - fromIsomorphism : hA ≅ hB → A ≃ B - fromIsomorphism iso = con obverse (gradLemma obverse inverse recto-verso verso-recto) - where - obverse : A → B - obverse = proj₁ iso - inverse : B → A - inverse = proj₁ (proj₂ iso) - -- FIXME IsInverseOf should change name to AreInverses and the - -- ordering should be swapped. - areInverses : IsInverseOf {A = hA} {hB} obverse inverse - areInverses = proj₂ (proj₂ iso) - verso-recto : ∀ a → (inverse ∘ obverse) a ≡ a - verso-recto a i = proj₁ areInverses i a - recto-verso : ∀ b → (obverse Function.∘ inverse) b ≡ b - recto-verso b i = proj₂ areInverses i b - - private - univIso : (A ≡ B) Eqv.≅ (A ≃ B) - univIso = Eeq.toIsomorphism univalence - obverse' : A ≡ B → A ≃ B - obverse' = proj₁ univIso - inverse' : A ≃ B → A ≡ B - inverse' = proj₁ (proj₂ univIso) - -- Drop proof of being a set from both sides of an equality. - dropP : hA ≡ hB → A ≡ B - dropP eq i = proj₁ (eq i) - -- Add proof of being a set to both sides of a set-theoretic equivalence - -- returning a category-theoretic equivalence. - addE : A Eqv.≅ B → hA ≅ hB - addE eqv = proj₁ eqv , (proj₁ (proj₂ eqv)) , asPair - where - areeqv = proj₂ (proj₂ eqv) - asPair = - let module Inv = Eqv.AreInverses areeqv - in Inv.verso-recto , Inv.recto-verso - - obverse : hA ≡ hB → hA ≅ hB - obverse = addE ∘ Eeq.toIsomorphism ∘ obverse' ∘ dropP - - -- Drop proof of being a set form both sides of a category-theoretic - -- equivalence returning a set-theoretic equivalence. - dropE : hA ≅ hB → A Eqv.≅ B - dropE eqv = obv , inv , asAreInverses - where - obv = proj₁ eqv - inv = proj₁ (proj₂ eqv) - areEq = proj₂ (proj₂ eqv) - asAreInverses : Eqv.AreInverses obv inv - asAreInverses = record { verso-recto = proj₁ areEq ; recto-verso = proj₂ areEq } - - isoToEquiv : A Eqv.≅ B → A ≃ B - isoToEquiv = Eeq.fromIsomorphism - - -- Add proof of being a set to both sides of an equality. - addP : A ≡ B → hA ≡ hB - addP p = lemSig (λ X → propPi λ x → propPi (λ y → propIsProp)) hA hB p - inverse : hA ≅ hB → hA ≡ hB - inverse = addP ∘ inverse' ∘ isoToEquiv ∘ dropE - - -- open AreInverses (proj₂ (proj₂ univIso)) renaming - -- ( verso-recto to verso-recto' - -- ; recto-verso to recto-verso' - -- ) - -- I can just open them but I wanna be able to see the type annotations. - verso-recto' : inverse' ∘ obverse' ≡ Function.id - verso-recto' = Eqv.AreInverses.verso-recto (proj₂ (proj₂ univIso)) - recto-verso' : obverse' ∘ inverse' ≡ Function.id - recto-verso' = Eqv.AreInverses.recto-verso (proj₂ (proj₂ univIso)) - verso-recto : (iso : hA ≅ hB) → obverse (inverse iso) ≡ iso - verso-recto iso = begin - obverse (inverse iso) ≡⟨⟩ - ( addE ∘ Eeq.toIsomorphism - ∘ obverse' ∘ dropP ∘ addP - ∘ inverse' ∘ isoToEquiv - ∘ dropE) iso - ≡⟨⟩ - ( addE ∘ Eeq.toIsomorphism - ∘ obverse' - ∘ inverse' ∘ isoToEquiv - ∘ dropE) iso - ≡⟨ {!!} ⟩ -- obverse' inverse' are inverses - ( addE ∘ Eeq.toIsomorphism ∘ isoToEquiv ∘ dropE) iso - ≡⟨ {!!} ⟩ -- should be easy to prove - -- _≃_.toIsomorphism ∘ isoToEquiv ≡ id - (addE ∘ dropE) iso - ≡⟨⟩ - iso ∎ - - -- Similar to above. - recto-verso : (eq : hA ≡ hB) → inverse (obverse eq) ≡ eq - recto-verso eq = begin - inverse (obverse eq) ≡⟨ {!!} ⟩ - eq ∎ - - -- Use the fact that being an h-level is a mere proposition. - -- This is almost provable using `Wishlist.isSetIsProp` - although - -- this creates homogenous paths. - isSetEq : (p : A ≡ B) → (λ i → isSet (p i)) [ isSetA ≡ isSetB ] - isSetEq = {!!} - - res : hA ≡ hB - proj₁ (res i) = {!!} - proj₂ (res i) = isSetEq {!!} i + module inv = AreInverses inv + bwd : hA ≅ hB → Σ (A → B) isIso + bwd (f , g , x , y) = f , g , record { verso-recto = x ; recto-verso = y } + res : Σ (A → B) isIso Eqv.≅ (hA ≅ hB) + res = fwd , bwd , record { verso-recto = refl ; recto-verso = refl } + conclusion : (hA ≅ hB) ≃ (hA ≡ hB) + conclusion = trivial? ⊙ step0 ⊙ step1 ⊙ step2 + t : (hA ≡ hB) ≃ (hA ≅ hB) + t = sym≃ conclusion + -- TODO Is the morphism `(_≃_.eqv conclusion)` the same as + -- `(id-to-iso (λ {A} {B} → isIdentity {A} {B}) hA hB)` ? + res : isEquiv (hA ≡ hB) (hA ≅ hB) (_≃_.eqv t) + res = _≃_.isEqv t + module _ {hA hB : hSet {ℓ}} where univalent : isEquiv (hA ≡ hB) (hA ≅ hB) (id-to-iso (λ {A} {B} → isIdentity {A} {B}) hA hB) - univalent = {!gradLemma obverse inverse verso-recto recto-verso!} + univalent = let k = _≃_.isEqv (sym≃ conclusion) in {!!} SetsIsCategory : IsCategory SetsRaw IsCategory.isAssociative SetsIsCategory = refl diff --git a/src/Cat/Equivalence.agda b/src/Cat/Equivalence.agda index 8e1e92c..62df900 100644 --- a/src/Cat/Equivalence.agda +++ b/src/Cat/Equivalence.agda @@ -21,6 +21,8 @@ module _ {ℓa ℓb : Level} where obverse = f reverse = g inverse = reverse + toPair : Σ _ _ + toPair = verso-recto , recto-verso Isomorphism : (f : A → B) → Set _ Isomorphism f = Σ (B → A) λ g → AreInverses f g @@ -28,6 +30,21 @@ module _ {ℓa ℓb : Level} where _≅_ : Set ℓa → Set ℓb → Set _ A ≅ B = Σ (A → B) Isomorphism +module _ {ℓ : Level} {A B : Set ℓ} {f : A → B} + (g : B → A) (s : {A B : Set ℓ} → isSet (A → B)) where + + propAreInverses : isProp (AreInverses {A = A} {B} f g) + propAreInverses x y i = record + { verso-recto = ve-re + ; recto-verso = re-ve + } + where + open AreInverses + ve-re : g ∘ f ≡ idFun A + ve-re = s (g ∘ f) (idFun A) (verso-recto x) (verso-recto y) i + re-ve : f ∘ g ≡ idFun B + re-ve = s (f ∘ g) (idFun B) (recto-verso x) (recto-verso y) i + -- In HoTT they generalize an equivalence to have the following 3 properties: module _ {ℓa ℓb ℓ : Level} (A : Set ℓa) (B : Set ℓb) where record Equiv (iseqv : (A → B) → Set ℓ) : Set (ℓa ⊔ ℓb ⊔ ℓ) where @@ -130,54 +147,18 @@ module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where module NoEta {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where open import Cubical.PathPrelude renaming (_≃_ to _≃η_) open import Cubical.Univalence using (_≃_) + + doEta : A ≃ B → A ≃η B + doEta (_≃_.con eqv isEqv) = eqv , isEqv + + deEta : A ≃η B → A ≃ B + deEta (eqv , isEqv) = _≃_.con eqv isEqv + module Equivalence′ (e : A ≃ B) where - private - doEta : A ≃ B → A ≃η B - doEta = {!!} - - deEta : A ≃η B → A ≃ B - deEta = {!!} - - e′ = doEta e - - module E = Equivalence e′ - open E hiding (toIsomorphism ; fromIsomorphism ; _~_) public + open Equivalence (doEta e) hiding (toIsomorphism ; fromIsomorphism ; _~_) public fromIsomorphism : A ≅ B → A ≃ B fromIsomorphism (f , iso) = _≃_.con f (Equiv≃.fromIso _ _ iso) toIsomorphism : A ≃ B → A ≅ B toIsomorphism (_≃_.con f eqv) = f , Equiv≃.toIso _ _ eqv - -- private - -- module Equiv′ (e : A ≃ B) where - -- open _≃_ e renaming (eqv to obverse) - - -- private - -- inverse : B → A - -- inverse b = fst (fst (isEqv b)) - - -- -- We can extract an isomorphism from an equivalence. - -- -- - -- -- One way to do it would be to use univalence and coersion - but there's - -- -- probably a more straight-forward way that does not require breaking the - -- -- dependency graph between this module and Cubical.Univalence - -- areInverses : AreInverses obverse inverse - -- areInverses = record - -- { verso-recto = verso-recto - -- ; recto-verso = recto-verso - -- } - -- where - -- postulate - -- verso-recto : inverse ∘ obverse ≡ idFun A - -- recto-verso : obverse ∘ inverse ≡ idFun B - - -- toIsomorphism : A ≅ B - -- toIsomorphism = obverse , (inverse , areInverses) - - -- open AreInverses areInverses - - -- equiv≃ : Equiv A B (isEquiv A B) - -- equiv≃ = {!!} - - -- -- A wrapper around Univalence.≃ - -- module Equiv≃′ = Equiv {!!}