Cosmetics
This commit is contained in:
parent
9ec6ce9eba
commit
f8e08288a0
|
@ -523,6 +523,8 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
|
||||
module _ (m : M.Monad) where
|
||||
open M.RawMonad (M.Monad.raw m)
|
||||
Romap = Functor.func* R
|
||||
Rfmap = Functor.func→ R
|
||||
rawEq* : Functor.func* (K.Monad.R (forth m)) ≡ Functor.func* R
|
||||
rawEq* = refl
|
||||
left = Functor.raw (K.Monad.R (forth m))
|
||||
|
@ -533,22 +535,35 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
→ Set _
|
||||
P _ eq fmap' = (λ i → Fmap ℂ ℂ (eq i))
|
||||
[ RawFunctor.func→ left ≡ fmap' ]
|
||||
-- rawEq→ : (λ i → Fmap ℂ ℂ (refl i)) [ Functor.func→ (K.Monad.R (forth m)) ≡ Functor.func→ R ]
|
||||
rawEq→ : P (RawFunctor.func* right) refl (RawFunctor.func→ right)
|
||||
-- rawEq→ : (fmap' : Fmap ℂ ℂ {!!}) → RawFunctor.func→ left ≡ fmap'
|
||||
|
||||
module KM = K.Monad (forth m)
|
||||
rawEq→ : (λ i → Fmap ℂ ℂ (refl i)) [ Functor.func→ (K.Monad.R (forth m)) ≡ Functor.func→ R ]
|
||||
-- aka:
|
||||
--
|
||||
-- rawEq→ : P (RawFunctor.func* right) refl (RawFunctor.func→ right)
|
||||
rawEq→ = begin
|
||||
(λ f → RawFunctor.func→ left f) ≡⟨⟩
|
||||
(λ f → KM.fmap f) ≡⟨⟩
|
||||
(λ f → KM.bind (f >>> KM.pure)) ≡⟨ {!!} ⟩
|
||||
(λ f → Rfmap f) ≡⟨⟩
|
||||
(λ f → RawFunctor.func→ right f) ∎
|
||||
where
|
||||
module KM = K.Monad (forth m)
|
||||
-- destfmap =
|
||||
source = (Functor.raw (K.Monad.R (forth m)))
|
||||
-- p : (fmap' : Fmap ℂ ℂ (RawFunctor.func* source)) → (λ i → Fmap ℂ ℂ (refl i)) [ func→ source ≡ fmap' ]
|
||||
-- p = {!!}
|
||||
|
||||
-- This goal is more general than the above goal which I also don't know
|
||||
-- how to close.
|
||||
p : (fmap' : Fmap ℂ ℂ (RawFunctor.func* left))
|
||||
→ (λ i → Fmap ℂ ℂ Romap) [ RawFunctor.func→ left ≡ fmap' ]
|
||||
-- aka:
|
||||
--
|
||||
-- p : P (RawFunctor.func* left) refl
|
||||
p fmap' = begin
|
||||
(λ f → RawFunctor.func→ left f) ≡⟨⟩
|
||||
(λ f → KM.fmap f) ≡⟨⟩
|
||||
(λ f → KM.bind (f >>> KM.pure)) ≡⟨ {!!} ⟩
|
||||
(λ f → fmap' f) ∎
|
||||
|
||||
rawEq : Functor.raw (K.Monad.R (forth m)) ≡ Functor.raw R
|
||||
rawEq = RawFunctor≡ ℂ ℂ {x = left} {right} refl λ fmap' → {!rawEq→!}
|
||||
rawEq = RawFunctor≡ ℂ ℂ {x = left} {right} (λ _ → Romap) p
|
||||
|
||||
Req : M.RawMonad.R (backRaw (forth m)) ≡ R
|
||||
Req = Functor≡ rawEq
|
||||
|
||||
|
|
Loading…
Reference in a new issue