From fa9a470875e6579aeca9fed0fa55ec96fec8181b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Frederik=20Hangh=C3=B8j=20Iversen?= Date: Thu, 8 Mar 2018 00:54:42 +0100 Subject: [PATCH] Update backlog --- BACKLOG.md | 19 ++++++++++++++++++- src/Cat/Categories/Rel.agda | 1 - 2 files changed, 18 insertions(+), 2 deletions(-) diff --git a/BACKLOG.md b/BACKLOG.md index bfbb32b..64ea62f 100644 --- a/BACKLOG.md +++ b/BACKLOG.md @@ -4,6 +4,16 @@ Backlog Prove univalence for various categories Prove postulates in `Cat.Wishlist` +`propHasLevel` should be in `cubical` +`ntypeCommulative` might be there as well. + +Define and use Monad≡ + +Prove that the opposite category is a category. + +Prove univalence for the category of + * sets + * functors and natural transformations * Functor ✓ * Applicative Functor ✗ @@ -11,4 +21,11 @@ Prove postulates in `Cat.Wishlist` * Monoidal functor ✗ * Tensorial strength ✗ * Category ✓ - * Monoidal category ✗ \ No newline at end of file + * Monoidal category ✗ +* Monad + * Monoidal monad ✓ + * Kleisli monad ✓ + * Problem 2.3 in voe + * 1st contruction ~ monoidal ✓ + * 2nd contruction ~ klesli ✓ + * 1st ≃ 2nd ✗ diff --git a/src/Cat/Categories/Rel.agda b/src/Cat/Categories/Rel.agda index de3d1f2..1dbed3d 100644 --- a/src/Cat/Categories/Rel.agda +++ b/src/Cat/Categories/Rel.agda @@ -56,7 +56,6 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where backwards (a' , (a=a' , a'b∈S)) = subst (sym a=a') a'b∈S fwd-bwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x - -- isbijective x = pathJ (λ y x₁ → (backwards ∘ forwards) x ≡ x) {!!} {!!} {!!} fwd-bwd x = pathJprop (λ y _ → y) x bwd-fwd : (x : Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)