Update backlog
This commit is contained in:
parent
e43bee6d9f
commit
fa9a470875
17
BACKLOG.md
17
BACKLOG.md
|
@ -4,6 +4,16 @@ Backlog
|
|||
Prove univalence for various categories
|
||||
|
||||
Prove postulates in `Cat.Wishlist`
|
||||
`propHasLevel` should be in `cubical`
|
||||
`ntypeCommulative` might be there as well.
|
||||
|
||||
Define and use Monad≡
|
||||
|
||||
Prove that the opposite category is a category.
|
||||
|
||||
Prove univalence for the category of
|
||||
* sets
|
||||
* functors and natural transformations
|
||||
|
||||
* Functor ✓
|
||||
* Applicative Functor ✗
|
||||
|
@ -12,3 +22,10 @@ Prove postulates in `Cat.Wishlist`
|
|||
* Tensorial strength ✗
|
||||
* Category ✓
|
||||
* Monoidal category ✗
|
||||
* Monad
|
||||
* Monoidal monad ✓
|
||||
* Kleisli monad ✓
|
||||
* Problem 2.3 in voe
|
||||
* 1st contruction ~ monoidal ✓
|
||||
* 2nd contruction ~ klesli ✓
|
||||
* 1st ≃ 2nd ✗
|
||||
|
|
|
@ -56,7 +56,6 @@ module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where
|
|||
backwards (a' , (a=a' , a'b∈S)) = subst (sym a=a') a'b∈S
|
||||
|
||||
fwd-bwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||||
-- isbijective x = pathJ (λ y x₁ → (backwards ∘ forwards) x ≡ x) {!!} {!!} {!!}
|
||||
fwd-bwd x = pathJprop (λ y _ → y) x
|
||||
|
||||
bwd-fwd : (x : Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||||
|
|
Loading…
Reference in a new issue