Restructure products
This commit is contained in:
parent
b61749bb91
commit
fae492a1e3
|
@ -151,16 +151,17 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
|||
private
|
||||
module P = CatProduct ℂ 𝔻
|
||||
|
||||
instance
|
||||
isProduct : IsProduct Catℓ P.proj₁ P.proj₂
|
||||
isProduct = P.isProduct
|
||||
rawProduct : RawProduct {ℂ = Catℓ} ℂ 𝔻
|
||||
RawProduct.obj rawProduct = P.obj
|
||||
RawProduct.proj₁ rawProduct = P.proj₁
|
||||
RawProduct.proj₂ rawProduct = P.proj₂
|
||||
|
||||
isProduct : IsProduct Catℓ rawProduct
|
||||
IsProduct.isProduct isProduct = P.isProduct
|
||||
|
||||
product : Product {ℂ = Catℓ} ℂ 𝔻
|
||||
product = record
|
||||
{ obj = P.obj
|
||||
; proj₁ = P.proj₁
|
||||
; proj₂ = P.proj₂
|
||||
}
|
||||
Product.raw product = rawProduct
|
||||
Product.isProduct product = isProduct
|
||||
|
||||
instance
|
||||
hasProducts : HasProducts Catℓ
|
||||
|
|
|
@ -64,17 +64,17 @@ module _ {ℓ : Level} where
|
|||
lem : proj₁ Function.∘′ (f &&& g) ≡ f × proj₂ Function.∘′ (f &&& g) ≡ g
|
||||
proj₁ lem = refl
|
||||
proj₂ lem = refl
|
||||
instance
|
||||
isProduct : IsProduct 𝓢 {0A} {0B} {0A×0B} proj₁ proj₂
|
||||
isProduct {X = X} f g = (f &&& g) , lem {0X = X} f g
|
||||
rawProduct : RawProduct {ℂ = 𝓢} 0A 0B
|
||||
RawProduct.obj rawProduct = 0A×0B
|
||||
RawProduct.proj₁ rawProduct = Data.Product.proj₁
|
||||
RawProduct.proj₂ rawProduct = Data.Product.proj₂
|
||||
isProduct : IsProduct 𝓢 rawProduct
|
||||
IsProduct.isProduct isProduct {X = X} f g
|
||||
= (f &&& g) , lem {0X = X} f g
|
||||
|
||||
product : Product {ℂ = 𝓢} 0A 0B
|
||||
product = record
|
||||
{ obj = 0A×0B
|
||||
; proj₁ = Data.Product.proj₁
|
||||
; proj₂ = Data.Product.proj₂
|
||||
; isProduct = λ { {X} → isProduct {X = X}}
|
||||
}
|
||||
Product.raw product = rawProduct
|
||||
Product.isProduct product = isProduct
|
||||
|
||||
instance
|
||||
SetsHasProducts : HasProducts 𝓢
|
||||
|
|
|
@ -2,61 +2,60 @@ module Cat.Category.Product where
|
|||
|
||||
open import Agda.Primitive
|
||||
open import Cubical
|
||||
open import Data.Product as P hiding (_×_)
|
||||
open import Data.Product as P hiding (_×_ ; proj₁ ; proj₂)
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category hiding (module Propositionality)
|
||||
|
||||
open Category
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where
|
||||
IsProduct : (π₁ : ℂ [ obj , A ]) (π₂ : ℂ [ obj , B ]) → Set (ℓ ⊔ ℓ')
|
||||
IsProduct π₁ π₂
|
||||
= ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||
→ ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ P.× ℂ [ π₂ ∘ x ] ≡ x₂)
|
||||
module _ {ℓa ℓb : Level} where
|
||||
record RawProduct {ℂ : Category ℓa ℓb} (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
||||
no-eta-equality
|
||||
field
|
||||
obj : Object ℂ
|
||||
proj₁ : ℂ [ obj , A ]
|
||||
proj₂ : ℂ [ obj , B ]
|
||||
|
||||
-- Tip from Andrea; Consider this style for efficiency:
|
||||
-- record IsProduct {ℓa ℓb : Level} (ℂ : Category ℓa ℓb)
|
||||
-- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓa ⊔ ℓb) where
|
||||
-- field
|
||||
-- issProduct : ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||
-- → ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ P.× ℂ [ π₂ ∘ x ] ≡ x₂)
|
||||
record IsProduct (ℂ : Category ℓa ℓb) {A B : Object ℂ} (raw : RawProduct {ℂ = ℂ} A B) : Set (ℓa ⊔ ℓb) where
|
||||
open RawProduct raw public
|
||||
field
|
||||
isProduct : ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||
→ ∃![ x ] (ℂ [ proj₁ ∘ x ] ≡ x₁ P.× ℂ [ proj₂ ∘ x ] ≡ x₂)
|
||||
|
||||
-- open IsProduct
|
||||
-- | Arrow product
|
||||
_P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
||||
→ ℂ [ X , obj ]
|
||||
_P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂)
|
||||
|
||||
-- TODO `isProp (Product ...)`
|
||||
-- TODO `isProp (HasProducts ...)`
|
||||
record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : Object ℂ) : Set (ℓ ⊔ ℓ') where
|
||||
no-eta-equality
|
||||
field
|
||||
obj : Object ℂ
|
||||
proj₁ : ℂ [ obj , A ]
|
||||
proj₂ : ℂ [ obj , B ]
|
||||
{{isProduct}} : IsProduct ℂ proj₁ proj₂
|
||||
record Product {ℂ : Category ℓa ℓb} (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
||||
field
|
||||
raw : RawProduct {ℂ = ℂ} A B
|
||||
isProduct : IsProduct ℂ {A} {B} raw
|
||||
|
||||
-- | Arrow product
|
||||
_P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
||||
→ ℂ [ X , obj ]
|
||||
_P[_×_] π₁ π₂ = proj₁ (isProduct π₁ π₂)
|
||||
open IsProduct isProduct public
|
||||
|
||||
record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
||||
record HasProducts (ℂ : Category ℓa ℓb) : Set (ℓa ⊔ ℓb) where
|
||||
field
|
||||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
||||
|
||||
open Product hiding (obj)
|
||||
module _ (A B : Object ℂ) where
|
||||
open Product (product A B)
|
||||
_×_ : Object ℂ
|
||||
_×_ = obj
|
||||
|
||||
module _ (A B : Object ℂ) where
|
||||
open Product (product A B)
|
||||
_×_ : Object ℂ
|
||||
_×_ = obj
|
||||
-- | Parallel product of arrows
|
||||
--
|
||||
-- The product mentioned in awodey in Def 6.1 is not the regular product of
|
||||
-- arrows. It's a "parallel" product
|
||||
module _ {A A' B B' : Object ℂ} where
|
||||
open Product
|
||||
open Product (product A B) hiding (_P[_×_]) renaming (proj₁ to fst ; proj₂ to snd)
|
||||
_|×|_ : ℂ [ A , A' ] → ℂ [ B , B' ] → ℂ [ A × B , A' × B' ]
|
||||
a |×| b = product A' B'
|
||||
P[ ℂ [ a ∘ fst ]
|
||||
× ℂ [ b ∘ snd ]
|
||||
]
|
||||
|
||||
-- | Parallel product of arrows
|
||||
--
|
||||
-- The product mentioned in awodey in Def 6.1 is not the regular product of
|
||||
-- arrows. It's a "parallel" product
|
||||
module _ {A A' B B' : Object ℂ} where
|
||||
open Product (product A B) hiding (_P[_×_]) renaming (proj₁ to fst ; proj₂ to snd)
|
||||
_|×|_ : ℂ [ A , A' ] → ℂ [ B , B' ] → ℂ [ A × B , A' × B' ]
|
||||
a |×| b = product A' B'
|
||||
P[ ℂ [ a ∘ fst ]
|
||||
× ℂ [ b ∘ snd ]
|
||||
]
|
||||
module Propositionality where
|
||||
-- TODO `isProp (Product ...)`
|
||||
-- TODO `isProp (HasProducts ...)`
|
||||
|
|
Loading…
Reference in a new issue