Make parameters explicit
This commit is contained in:
parent
fae492a1e3
commit
faf4c54188
|
@ -151,7 +151,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
private
|
private
|
||||||
module P = CatProduct ℂ 𝔻
|
module P = CatProduct ℂ 𝔻
|
||||||
|
|
||||||
rawProduct : RawProduct {ℂ = Catℓ} ℂ 𝔻
|
rawProduct : RawProduct Catℓ ℂ 𝔻
|
||||||
RawProduct.obj rawProduct = P.obj
|
RawProduct.obj rawProduct = P.obj
|
||||||
RawProduct.proj₁ rawProduct = P.proj₁
|
RawProduct.proj₁ rawProduct = P.proj₁
|
||||||
RawProduct.proj₂ rawProduct = P.proj₂
|
RawProduct.proj₂ rawProduct = P.proj₂
|
||||||
|
@ -159,7 +159,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
isProduct : IsProduct Catℓ rawProduct
|
isProduct : IsProduct Catℓ rawProduct
|
||||||
IsProduct.isProduct isProduct = P.isProduct
|
IsProduct.isProduct isProduct = P.isProduct
|
||||||
|
|
||||||
product : Product {ℂ = Catℓ} ℂ 𝔻
|
product : Product Catℓ ℂ 𝔻
|
||||||
Product.raw product = rawProduct
|
Product.raw product = rawProduct
|
||||||
Product.isProduct product = isProduct
|
Product.isProduct product = isProduct
|
||||||
|
|
||||||
|
|
|
@ -64,15 +64,17 @@ module _ {ℓ : Level} where
|
||||||
lem : proj₁ Function.∘′ (f &&& g) ≡ f × proj₂ Function.∘′ (f &&& g) ≡ g
|
lem : proj₁ Function.∘′ (f &&& g) ≡ f × proj₂ Function.∘′ (f &&& g) ≡ g
|
||||||
proj₁ lem = refl
|
proj₁ lem = refl
|
||||||
proj₂ lem = refl
|
proj₂ lem = refl
|
||||||
rawProduct : RawProduct {ℂ = 𝓢} 0A 0B
|
|
||||||
|
rawProduct : RawProduct 𝓢 0A 0B
|
||||||
RawProduct.obj rawProduct = 0A×0B
|
RawProduct.obj rawProduct = 0A×0B
|
||||||
RawProduct.proj₁ rawProduct = Data.Product.proj₁
|
RawProduct.proj₁ rawProduct = Data.Product.proj₁
|
||||||
RawProduct.proj₂ rawProduct = Data.Product.proj₂
|
RawProduct.proj₂ rawProduct = Data.Product.proj₂
|
||||||
|
|
||||||
isProduct : IsProduct 𝓢 rawProduct
|
isProduct : IsProduct 𝓢 rawProduct
|
||||||
IsProduct.isProduct isProduct {X = X} f g
|
IsProduct.isProduct isProduct {X = X} f g
|
||||||
= (f &&& g) , lem {0X = X} f g
|
= (f &&& g) , lem {0X = X} f g
|
||||||
|
|
||||||
product : Product {ℂ = 𝓢} 0A 0B
|
product : Product 𝓢 0A 0B
|
||||||
Product.raw product = rawProduct
|
Product.raw product = rawProduct
|
||||||
Product.isProduct product = isProduct
|
Product.isProduct product = isProduct
|
||||||
|
|
||||||
|
|
|
@ -9,14 +9,14 @@ open import Cat.Category hiding (module Propositionality)
|
||||||
open Category
|
open Category
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} where
|
module _ {ℓa ℓb : Level} where
|
||||||
record RawProduct {ℂ : Category ℓa ℓb} (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
record RawProduct (ℂ : Category ℓa ℓb) (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
||||||
no-eta-equality
|
no-eta-equality
|
||||||
field
|
field
|
||||||
obj : Object ℂ
|
obj : Object ℂ
|
||||||
proj₁ : ℂ [ obj , A ]
|
proj₁ : ℂ [ obj , A ]
|
||||||
proj₂ : ℂ [ obj , B ]
|
proj₂ : ℂ [ obj , B ]
|
||||||
|
|
||||||
record IsProduct (ℂ : Category ℓa ℓb) {A B : Object ℂ} (raw : RawProduct {ℂ = ℂ} A B) : Set (ℓa ⊔ ℓb) where
|
record IsProduct (ℂ : Category ℓa ℓb) {A B : Object ℂ} (raw : RawProduct ℂ A B) : Set (ℓa ⊔ ℓb) where
|
||||||
open RawProduct raw public
|
open RawProduct raw public
|
||||||
field
|
field
|
||||||
isProduct : ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
isProduct : ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||||
|
@ -27,16 +27,16 @@ module _ {ℓa ℓb : Level} where
|
||||||
→ ℂ [ X , obj ]
|
→ ℂ [ X , obj ]
|
||||||
_P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂)
|
_P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂)
|
||||||
|
|
||||||
record Product {ℂ : Category ℓa ℓb} (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
record Product (ℂ : Category ℓa ℓb) (A B : Object ℂ) : Set (ℓa ⊔ ℓb) where
|
||||||
field
|
field
|
||||||
raw : RawProduct {ℂ = ℂ} A B
|
raw : RawProduct ℂ A B
|
||||||
isProduct : IsProduct ℂ {A} {B} raw
|
isProduct : IsProduct ℂ {A} {B} raw
|
||||||
|
|
||||||
open IsProduct isProduct public
|
open IsProduct isProduct public
|
||||||
|
|
||||||
record HasProducts (ℂ : Category ℓa ℓb) : Set (ℓa ⊔ ℓb) where
|
record HasProducts (ℂ : Category ℓa ℓb) : Set (ℓa ⊔ ℓb) where
|
||||||
field
|
field
|
||||||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
product : ∀ (A B : Object ℂ) → Product ℂ A B
|
||||||
|
|
||||||
module _ (A B : Object ℂ) where
|
module _ (A B : Object ℂ) where
|
||||||
open Product (product A B)
|
open Product (product A B)
|
||||||
|
|
Loading…
Reference in a new issue