Export TypeIsomorphism as an alias for Equivalence.Isomorphism
This commit is contained in:
parent
8c6e327b1c
commit
fd18985e53
|
@ -29,7 +29,11 @@
|
|||
module Cat.Category where
|
||||
|
||||
open import Cat.Prelude
|
||||
open import Cat.Equivalence as Equivalence renaming (_≅_ to _≈_ ; Isomorphism to TypeIsomorphism) hiding (preorder≅)
|
||||
import Cat.Equivalence
|
||||
open Cat.Equivalence public using () renaming (Isomorphism to TypeIsomorphism)
|
||||
open Cat.Equivalence
|
||||
renaming (_≅_ to _≈_)
|
||||
hiding (preorder≅ ; Isomorphism)
|
||||
|
||||
import Function
|
||||
|
||||
|
@ -485,7 +489,7 @@ module Opposite {ℓa ℓb : Level} where
|
|||
open IsPreCategory isPreCategory
|
||||
|
||||
module _ {A B : ℂ.Object} where
|
||||
k : Equivalence.Isomorphism (ℂ.idToIso A B)
|
||||
k : TypeIsomorphism (ℂ.idToIso A B)
|
||||
k = toIso _ _ ℂ.univalent
|
||||
open Σ k renaming (fst to η ; snd to inv-η)
|
||||
open AreInverses inv-η
|
||||
|
@ -537,7 +541,7 @@ module Opposite {ℓa ℓb : Level} where
|
|||
x ∎)
|
||||
}
|
||||
|
||||
h : Equivalence.Isomorphism (idToIso A B)
|
||||
h : TypeIsomorphism (idToIso A B)
|
||||
h = ζ , inv-ζ
|
||||
|
||||
isCategory : IsCategory opRaw
|
||||
|
|
|
@ -209,3 +209,6 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
|
||||
Monoidal≃Kleisli : M.Monad ≃ K.Monad
|
||||
Monoidal≃Kleisli = forth , eqv
|
||||
|
||||
Monoidal≡Kleisli : M.Monad ≡ K.Monad
|
||||
Monoidal≡Kleisli = ua (forth , eqv)
|
||||
|
|
|
@ -172,9 +172,6 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
where
|
||||
t' : ((Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure})
|
||||
≡ §2-3.§2.toMonad
|
||||
cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A}
|
||||
→ (f : (x : A) → B x) → (eq : x ≡ y) → PathP (\ i → B (eq i)) (f x) (f y)
|
||||
cong-d f p = λ i → f (p i)
|
||||
t' = cong (\ φ → φ ∘ §2-3.§2.toMonad) re-ve
|
||||
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure})
|
||||
≡ (§2-fromMonad ∘ §2-3.§2.toMonad)
|
||||
|
|
|
@ -203,12 +203,15 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
: ((X , xa , xb) ≡ (Y , ya , yb))
|
||||
≈ (Σ[ p ∈ (X ≡ Y) ] (PathP (λ i → ℂ.Arrow (p i) A) xa ya) × (PathP (λ i → ℂ.Arrow (p i) B) xb yb))
|
||||
step0
|
||||
= (λ p → (λ i → fst (p i)) , (λ i → fst (snd (p i))) , (λ i → snd (snd (p i))))
|
||||
, (λ x → λ i → fst x i , (fst (snd x) i) , (snd (snd x) i))
|
||||
= (λ p → cong fst p , cong-d (fst ⊙ snd) p , cong-d (snd ⊙ snd) p)
|
||||
-- , (λ x → λ i → fst x i , (fst (snd x) i) , (snd (snd x) i))
|
||||
, (λ{ (p , q , r) → Σ≡ p λ i → q i , r i})
|
||||
, record
|
||||
{ verso-recto = {!!}
|
||||
; recto-verso = {!!}
|
||||
}
|
||||
where
|
||||
open import Function renaming (_∘_ to _⊙_)
|
||||
step1
|
||||
: (Σ[ p ∈ (X ≡ Y) ] (PathP (λ i → ℂ.Arrow (p i) A) xa ya) × (PathP (λ i → ℂ.Arrow (p i) B) xb yb))
|
||||
≈ Σ (X ℂ.≅ Y) (λ iso
|
||||
|
|
Loading…
Reference in a new issue