Trying to prove cummulativity of homotopy levels
This commit is contained in:
parent
c52384b012
commit
fe453a6d3a
|
@ -175,12 +175,12 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
where
|
where
|
||||||
lem : Monoidal→Kleisli ∘ Kleisli→Monoidal ≡ Function.id
|
lem : Monoidal→Kleisli ∘ Kleisli→Monoidal ≡ Function.id
|
||||||
lem = {!!} -- verso-recto Monoidal≃Kleisli
|
lem = {!!} -- verso-recto Monoidal≃Kleisli
|
||||||
t : {ℓ : Level} {A B : Set ℓ} {a : _ → A} {b : B → _}
|
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad)
|
||||||
→ a ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ b ≡ a ∘ b
|
≡ (§2-fromMonad ∘ §2-3.§2.toMonad)
|
||||||
t {a = a} {b} = cong (λ φ → a ∘ φ ∘ b) lem
|
t = cong (λ φ → §2-fromMonad ∘ (λ{ {ω} → φ {{!????!}}}) ∘ §2-3.§2.toMonad) {!lem!}
|
||||||
u : {ℓ : Level} {A B : Set ℓ} {a : _ → A} {b : B → _}
|
u : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad) m
|
||||||
→ {m : _} → (a ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ b) m ≡ (a ∘ b) m
|
≡ (§2-fromMonad ∘ §2-3.§2.toMonad) m
|
||||||
u {m = m} = cong (λ φ → φ m) t
|
u = cong (λ φ → φ m) t
|
||||||
|
|
||||||
backEq : ∀ m → (back ∘ forth) m ≡ m
|
backEq : ∀ m → (back ∘ forth) m ≡ m
|
||||||
backEq m = begin
|
backEq m = begin
|
||||||
|
|
|
@ -1,9 +1,41 @@
|
||||||
|
{-# OPTIONS --allow-unsolved-metas #-}
|
||||||
module Cat.Wishlist where
|
module Cat.Wishlist where
|
||||||
|
|
||||||
open import Level
|
open import Level hiding (suc)
|
||||||
|
open import Cubical
|
||||||
open import Cubical.NType
|
open import Cubical.NType
|
||||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
open import Data.Nat using (_≤_ ; z≤n ; s≤s ; zero ; suc)
|
||||||
|
open import Agda.Builtin.Sigma
|
||||||
|
|
||||||
open import Cubical.NType.Properties
|
open import Cubical.NType.Properties
|
||||||
|
|
||||||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
step : ∀ {ℓ} {A : Set ℓ} → isContr A → (x y : A) → isContr (x ≡ y)
|
||||||
|
step (a , contr) x y = {!p , c!}
|
||||||
|
-- where
|
||||||
|
-- p : x ≡ y
|
||||||
|
-- p = begin
|
||||||
|
-- x ≡⟨ sym (contr x) ⟩
|
||||||
|
-- a ≡⟨ contr y ⟩
|
||||||
|
-- y ∎
|
||||||
|
-- c : (q : x ≡ y) → p ≡ q
|
||||||
|
-- c q i j = contr (p {!!}) {!!}
|
||||||
|
|
||||||
|
-- Contractible types have any given homotopy level.
|
||||||
|
contrInitial : {ℓ : Level} {A : Set ℓ} → ∀ n → isContr A → HasLevel n A
|
||||||
|
contrInitial ⟨-2⟩ contr = contr
|
||||||
|
-- lem' (S ⟨-2⟩) (a , contr) = {!step!}
|
||||||
|
contrInitial (S ⟨-2⟩) (a , contr) x y = begin
|
||||||
|
x ≡⟨ sym (contr x) ⟩
|
||||||
|
a ≡⟨ contr y ⟩
|
||||||
|
y ∎
|
||||||
|
contrInitial (S (S n)) contr x y = {!lvl!} -- Why is this not well-founded?
|
||||||
|
where
|
||||||
|
c : isContr (x ≡ y)
|
||||||
|
c = step contr x y
|
||||||
|
lvl : HasLevel (S n) (x ≡ y)
|
||||||
|
lvl = contrInitial {A = x ≡ y} (S n) c
|
||||||
|
|
||||||
|
module _ {ℓ : Level} {A : Set ℓ} where
|
||||||
|
ntypeCommulative : ∀ {n m} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||||
|
ntypeCommulative {n = zero} {m} z≤n lvl = {!contrInitial ⟨ m ⟩₋₂ lvl!}
|
||||||
|
ntypeCommulative {n = .(suc _)} {.(suc _)} (s≤s x) lvl = {!!}
|
||||||
|
|
Loading…
Reference in a new issue