Trying to prove cummulativity of homotopy levels
This commit is contained in:
parent
c52384b012
commit
fe453a6d3a
|
@ -175,12 +175,12 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
where
|
||||
lem : Monoidal→Kleisli ∘ Kleisli→Monoidal ≡ Function.id
|
||||
lem = {!!} -- verso-recto Monoidal≃Kleisli
|
||||
t : {ℓ : Level} {A B : Set ℓ} {a : _ → A} {b : B → _}
|
||||
→ a ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ b ≡ a ∘ b
|
||||
t {a = a} {b} = cong (λ φ → a ∘ φ ∘ b) lem
|
||||
u : {ℓ : Level} {A B : Set ℓ} {a : _ → A} {b : B → _}
|
||||
→ {m : _} → (a ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ b) m ≡ (a ∘ b) m
|
||||
u {m = m} = cong (λ φ → φ m) t
|
||||
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad)
|
||||
≡ (§2-fromMonad ∘ §2-3.§2.toMonad)
|
||||
t = cong (λ φ → §2-fromMonad ∘ (λ{ {ω} → φ {{!????!}}}) ∘ §2-3.§2.toMonad) {!lem!}
|
||||
u : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad) m
|
||||
≡ (§2-fromMonad ∘ §2-3.§2.toMonad) m
|
||||
u = cong (λ φ → φ m) t
|
||||
|
||||
backEq : ∀ m → (back ∘ forth) m ≡ m
|
||||
backEq m = begin
|
||||
|
|
|
@ -1,9 +1,41 @@
|
|||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
module Cat.Wishlist where
|
||||
|
||||
open import Level
|
||||
open import Level hiding (suc)
|
||||
open import Cubical
|
||||
open import Cubical.NType
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s ; zero ; suc)
|
||||
open import Agda.Builtin.Sigma
|
||||
|
||||
open import Cubical.NType.Properties
|
||||
|
||||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||
step : ∀ {ℓ} {A : Set ℓ} → isContr A → (x y : A) → isContr (x ≡ y)
|
||||
step (a , contr) x y = {!p , c!}
|
||||
-- where
|
||||
-- p : x ≡ y
|
||||
-- p = begin
|
||||
-- x ≡⟨ sym (contr x) ⟩
|
||||
-- a ≡⟨ contr y ⟩
|
||||
-- y ∎
|
||||
-- c : (q : x ≡ y) → p ≡ q
|
||||
-- c q i j = contr (p {!!}) {!!}
|
||||
|
||||
-- Contractible types have any given homotopy level.
|
||||
contrInitial : {ℓ : Level} {A : Set ℓ} → ∀ n → isContr A → HasLevel n A
|
||||
contrInitial ⟨-2⟩ contr = contr
|
||||
-- lem' (S ⟨-2⟩) (a , contr) = {!step!}
|
||||
contrInitial (S ⟨-2⟩) (a , contr) x y = begin
|
||||
x ≡⟨ sym (contr x) ⟩
|
||||
a ≡⟨ contr y ⟩
|
||||
y ∎
|
||||
contrInitial (S (S n)) contr x y = {!lvl!} -- Why is this not well-founded?
|
||||
where
|
||||
c : isContr (x ≡ y)
|
||||
c = step contr x y
|
||||
lvl : HasLevel (S n) (x ≡ y)
|
||||
lvl = contrInitial {A = x ≡ y} (S n) c
|
||||
|
||||
module _ {ℓ : Level} {A : Set ℓ} where
|
||||
ntypeCommulative : ∀ {n m} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||
ntypeCommulative {n = zero} {m} z≤n lvl = {!contrInitial ⟨ m ⟩₋₂ lvl!}
|
||||
ntypeCommulative {n = .(suc _)} {.(suc _)} (s≤s x) lvl = {!!}
|
||||
|
|
Loading…
Reference in a new issue