Make postulate

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-01 14:58:49 +01:00
parent ae46a48861
commit ff2952e9ad

View file

@ -76,14 +76,13 @@ module Monoidal {a b : Level} ( : Category a b) where
isDistributive {X} {Y} {Z} g f = sym done
where
module R² = Functor F[ R R ]
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
distrib = {!!}
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
comm = {!!}
postulate
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
lemmm : μ Z R.func→ (μ Z) μ Z μ (R.func* Z)
lemmm = isAssociative
lem4 : μ (R.func* Z) R².func→ g R.func→ g μ Y
@ -110,8 +109,7 @@ module Monoidal {a b : Level} ( : Category a b) where
Monad.isMonad (Monad≡ {m} {n} eq i) = res i
where
-- TODO: PathJ nightmare + `propIsMonad`.
res : (λ i IsMonad (eq i)) [ Monad.isMonad m Monad.isMonad n ]
res = {!!}
postulate res : (λ i IsMonad (eq i)) [ Monad.isMonad m Monad.isMonad n ]
-- "A monad in the Kleisli form" [voe]
module Kleisli {a b : Level} ( : Category a b) where