{-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Categories.Cat where open import Agda.Primitive open import Cubical open import Function open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Category open import Cat.Functor -- Use co-patterns - they help with showing more understandable types in goals. lift-eq : ∀ {ℓ} {A B : Set ℓ} {a a' : A} {b b' : B} → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') fst (lift-eq a b i) = a i snd (lift-eq a b i) = b i --lift-eq a b = λ i → a i , b i open Functor open Category module _ {ℓ ℓ' : Level} {A B : Category ℓ ℓ'} where lift-eq-functors : {f g : Functor A B} → (eq* : Functor.func* f ≡ Functor.func* g) → (eq→ : PathP (λ i → ∀ {x y} → Arrow A x y → Arrow B (eq* i x) (eq* i y)) (func→ f) (func→ g)) -- → (eq→ : Functor.func→ f ≡ {!!}) -- Functor.func→ g) -- Use PathP -- directly to show heterogeneous equalities by using previous -- equalities (i.e. continuous paths) to create new continuous paths. → (eqI : PathP (λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ B .𝟙 {eq* i c}) (ident f) (ident g)) → (eqD : PathP (λ i → { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''} → eq→ i (A ._⊕_ a' a) ≡ B ._⊕_ (eq→ i a') (eq→ i a)) (distrib f) (distrib g)) → f ≡ g lift-eq-functors eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i } -- The category of categories module _ {ℓ ℓ' : Level} where private _⊛_ = functor-comp module _ {A B C D : Category ℓ ℓ'} {f : Functor A B} {g : Functor B C} {h : Functor C D} where postulate assc : h ⊛ (g ⊛ f) ≡ (h ⊛ g) ⊛ f -- assc = lift-eq-functors refl refl {!refl!} λ i j → {!!} module _ {A B : Category ℓ ℓ'} {f : Functor A B} where lem : (func* f) ∘ (func* (identity {C = A})) ≡ func* f lem = refl -- lemmm : func→ {C = A} {D = B} (f ⊛ identity) ≡ func→ f lemmm : PathP (λ i → {x y : Object A} → Arrow A x y → Arrow B (func* f x) (func* f y)) (func→ (f ⊛ identity)) (func→ f) lemmm = refl postulate lemz : PathP (λ i → {c : A .Object} → PathP (λ _ → Arrow B (func* f c) (func* f c)) (func→ f (A .𝟙)) (B .𝟙)) (ident (f ⊛ identity)) (ident f) -- lemz = {!!} postulate ident-r : f ⊛ identity ≡ f -- ident-r = lift-eq-functors lem lemmm {!lemz!} {!!} postulate ident-l : identity ⊛ f ≡ f -- ident-l = lift-eq-functors lem lemmm {!refl!} {!!} CatCat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ') CatCat = record { Object = Category ℓ ℓ' ; Arrow = Functor ; 𝟙 = identity ; _⊕_ = functor-comp -- What gives here? Why can I not name the variables directly? ; assoc = λ {_ _ _ _ f g h} → assc {f = f} {g = g} {h = h} ; ident = ident-r , ident-l } module _ {ℓ : Level} (C D : Category ℓ ℓ) where private proj₁ : Arrow CatCat (catProduct C D) C proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl } proj₂ : Arrow CatCat (catProduct C D) D proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl } module _ {X : Object (CatCat {ℓ} {ℓ})} (x₁ : Arrow CatCat X C) (x₂ : Arrow CatCat X D) where open Functor -- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D) -- ident' {c = c} = lift-eq (ident x₁) (ident x₂) x : Functor X (catProduct C D) x = record { func* = λ x → (func* x₁) x , (func* x₂) x ; func→ = λ x → func→ x₁ x , func→ x₂ x ; ident = lift-eq (ident x₁) (ident x₂) ; distrib = lift-eq (distrib x₁) (distrib x₂) } -- Need to "lift equality of functors" -- If I want to do this like I do it for pairs it's gonna be a pain. isUniqL : (CatCat ⊕ proj₁) x ≡ x₁ isUniqL = lift-eq-functors refl refl {!!} {!!} isUniqR : (CatCat ⊕ proj₂) x ≡ x₂ isUniqR = lift-eq-functors refl refl {!!} {!!} isUniq : (CatCat ⊕ proj₁) x ≡ x₁ × (CatCat ⊕ proj₂) x ≡ x₂ isUniq = isUniqL , isUniqR uniq : ∃![ x ] ((CatCat ⊕ proj₁) x ≡ x₁ × (CatCat ⊕ proj₂) x ≡ x₂) uniq = x , isUniq instance isProduct : IsProduct CatCat proj₁ proj₂ isProduct = uniq product : Product {ℂ = CatCat} C D product = record { obj = catProduct C D ; proj₁ = proj₁ ; proj₂ = proj₂ }