{-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Category.Monad where open import Agda.Primitive open import Data.Product open import Cubical open import Cubical.NType.Properties using (lemPropF ; lemSig) open import Cat.Category open import Cat.Category.Functor as F open import Cat.Category.NaturalTransformation open import Cat.Categories.Fun -- "A monad in the monoidal form" [voe] module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where private ℓ = ℓa ⊔ ℓb open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_) open NaturalTransformation ℂ ℂ record RawMonad : Set ℓ where field R : EndoFunctor ℂ pureNT : NaturalTransformation F.identity R joinNT : NaturalTransformation F[ R ∘ R ] R -- Note that `pureT` and `joinT` differs from their definition in the -- kleisli formulation only by having an explicit parameter. pureT : Transformation F.identity R pureT = proj₁ pureNT pureN : Natural F.identity R pureT pureN = proj₂ pureNT joinT : Transformation F[ R ∘ R ] R joinT = proj₁ joinNT joinN : Natural F[ R ∘ R ] R joinT joinN = proj₂ joinNT Romap = Functor.func* R Rfmap = Functor.func→ R bind : {X Y : Object} → ℂ [ X , Romap Y ] → ℂ [ Romap X , Romap Y ] bind {X} {Y} f = joinT Y ∘ Rfmap f IsAssociative : Set _ IsAssociative = {X : Object} → joinT X ∘ Rfmap (joinT X) ≡ joinT X ∘ joinT (Romap X) IsInverse : Set _ IsInverse = {X : Object} → joinT X ∘ pureT (Romap X) ≡ 𝟙 × joinT X ∘ Rfmap (pureT X) ≡ 𝟙 IsNatural = ∀ {X Y} f → joinT Y ∘ Rfmap f ∘ pureT X ≡ f IsDistributive = ∀ {X Y Z} (g : Arrow Y (Romap Z)) (f : Arrow X (Romap Y)) → joinT Z ∘ Rfmap g ∘ (joinT Y ∘ Rfmap f) ≡ joinT Z ∘ Rfmap (joinT Z ∘ Rfmap g ∘ f) record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isAssociative : IsAssociative isInverse : IsInverse private module R = Functor R module ℂ = Category ℂ isNatural : IsNatural isNatural {X} {Y} f = begin joinT Y ∘ R.func→ f ∘ pureT X ≡⟨ sym ℂ.isAssociative ⟩ joinT Y ∘ (R.func→ f ∘ pureT X) ≡⟨ cong (λ φ → joinT Y ∘ φ) (sym (pureN f)) ⟩ joinT Y ∘ (pureT (R.func* Y) ∘ f) ≡⟨ ℂ.isAssociative ⟩ joinT Y ∘ pureT (R.func* Y) ∘ f ≡⟨ cong (λ φ → φ ∘ f) (proj₁ isInverse) ⟩ 𝟙 ∘ f ≡⟨ proj₂ ℂ.isIdentity ⟩ f ∎ isDistributive : IsDistributive isDistributive {X} {Y} {Z} g f = sym aux where module R² = Functor F[ R ∘ R ] distrib3 : ∀ {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B} → R.func→ (a ∘ b ∘ c) ≡ R.func→ a ∘ R.func→ b ∘ R.func→ c distrib3 {a = a} {b} {c} = begin R.func→ (a ∘ b ∘ c) ≡⟨ R.isDistributive ⟩ R.func→ (a ∘ b) ∘ R.func→ c ≡⟨ cong (_∘ _) R.isDistributive ⟩ R.func→ a ∘ R.func→ b ∘ R.func→ c ∎ aux = begin joinT Z ∘ R.func→ (joinT Z ∘ R.func→ g ∘ f) ≡⟨ cong (λ φ → joinT Z ∘ φ) distrib3 ⟩ joinT Z ∘ (R.func→ (joinT Z) ∘ R.func→ (R.func→ g) ∘ R.func→ f) ≡⟨⟩ joinT Z ∘ (R.func→ (joinT Z) ∘ R².func→ g ∘ R.func→ f) ≡⟨ cong (_∘_ (joinT Z)) (sym ℂ.isAssociative) ⟩ joinT Z ∘ (R.func→ (joinT Z) ∘ (R².func→ g ∘ R.func→ f)) ≡⟨ ℂ.isAssociative ⟩ (joinT Z ∘ R.func→ (joinT Z)) ∘ (R².func→ g ∘ R.func→ f) ≡⟨ cong (λ φ → φ ∘ (R².func→ g ∘ R.func→ f)) isAssociative ⟩ (joinT Z ∘ joinT (R.func* Z)) ∘ (R².func→ g ∘ R.func→ f) ≡⟨ ℂ.isAssociative ⟩ joinT Z ∘ joinT (R.func* Z) ∘ R².func→ g ∘ R.func→ f ≡⟨⟩ ((joinT Z ∘ joinT (R.func* Z)) ∘ R².func→ g) ∘ R.func→ f ≡⟨ cong (_∘ R.func→ f) (sym ℂ.isAssociative) ⟩ (joinT Z ∘ (joinT (R.func* Z) ∘ R².func→ g)) ∘ R.func→ f ≡⟨ cong (λ φ → φ ∘ R.func→ f) (cong (_∘_ (joinT Z)) (joinN g)) ⟩ (joinT Z ∘ (R.func→ g ∘ joinT Y)) ∘ R.func→ f ≡⟨ cong (_∘ R.func→ f) ℂ.isAssociative ⟩ joinT Z ∘ R.func→ g ∘ joinT Y ∘ R.func→ f ≡⟨ sym (Category.isAssociative ℂ) ⟩ joinT Z ∘ R.func→ g ∘ (joinT Y ∘ R.func→ f) ∎ record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public private module _ {m : RawMonad} where open RawMonad m propIsAssociative : isProp IsAssociative propIsAssociative x y i {X} = Category.arrowsAreSets ℂ _ _ (x {X}) (y {X}) i propIsInverse : isProp IsInverse propIsInverse x y i {X} = e1 i , e2 i where xX = x {X} yX = y {X} e1 = Category.arrowsAreSets ℂ _ _ (proj₁ xX) (proj₁ yX) e2 = Category.arrowsAreSets ℂ _ _ (proj₂ xX) (proj₂ yX) open IsMonad propIsMonad : (raw : _) → isProp (IsMonad raw) IsMonad.isAssociative (propIsMonad raw a b i) j = propIsAssociative {raw} (isAssociative a) (isAssociative b) i j IsMonad.isInverse (propIsMonad raw a b i) = propIsInverse {raw} (isInverse a) (isInverse b) i module _ {m n : Monad} (eq : Monad.raw m ≡ Monad.raw n) where private eqIsMonad : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] eqIsMonad = lemPropF propIsMonad eq Monad≡ : m ≡ n Monad.raw (Monad≡ i) = eq i Monad.isMonad (Monad≡ i) = eqIsMonad i -- "A monad in the Kleisli form" [voe] module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where private ℓ = ℓa ⊔ ℓb module ℂ = Category ℂ open ℂ using (Arrow ; 𝟙 ; Object ; _∘_ ; _>>>_) -- | Data for a monad. -- -- Note that (>>=) is not expressible in a general category because objects -- are not generally types. record RawMonad : Set ℓ where field omap : Object → Object pure : {X : Object} → ℂ [ X , omap X ] bind : {X Y : Object} → ℂ [ X , omap Y ] → ℂ [ omap X , omap Y ] -- | functor map -- -- This should perhaps be defined in a "Klesli-version" of functors as well? fmap : ∀ {A B} → ℂ [ A , B ] → ℂ [ omap A , omap B ] fmap f = bind (pure ∘ f) -- | Composition of monads aka. the kleisli-arrow. _>=>_ : {A B C : Object} → ℂ [ A , omap B ] → ℂ [ B , omap C ] → ℂ [ A , omap C ] f >=> g = f >>> (bind g) -- | Flattening nested monads. join : {A : Object} → ℂ [ omap (omap A) , omap A ] join = bind 𝟙 ------------------ -- * Monad laws -- ------------------ -- There may be better names than what I've chosen here. IsIdentity = {X : Object} → bind pure ≡ 𝟙 {omap X} IsNatural = {X Y : Object} (f : ℂ [ X , omap Y ]) → pure >>> (bind f) ≡ f IsDistributive = {X Y Z : Object} (g : ℂ [ Y , omap Z ]) (f : ℂ [ X , omap Y ]) → (bind f) >>> (bind g) ≡ bind (f >=> g) -- | Functor map fusion. -- -- This is really a functor law. Should we have a kleisli-representation of -- functors as well and make them a super-class? Fusion = {X Y Z : Object} {g : ℂ [ Y , Z ]} {f : ℂ [ X , Y ]} → fmap (g ∘ f) ≡ fmap g ∘ fmap f -- In the ("foreign") formulation of a monad `IsNatural`'s analogue here would be: IsNaturalForeign : Set _ IsNaturalForeign = {X : Object} → join {X} ∘ fmap join ≡ join ∘ join IsInverse : Set _ IsInverse = {X : Object} → join {X} ∘ pure ≡ 𝟙 × join {X} ∘ fmap pure ≡ 𝟙 record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isIdentity : IsIdentity isNatural : IsNatural isDistributive : IsDistributive -- | Map fusion is admissable. fusion : Fusion fusion {g = g} {f} = begin fmap (g ∘ f) ≡⟨⟩ bind ((f >>> g) >>> pure) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (f >>> (g >>> pure)) ≡⟨ cong (λ φ → bind (f >>> φ)) (sym (isNatural _)) ⟩ bind (f >>> (pure >>> (bind (g >>> pure)))) ≡⟨⟩ bind (f >>> (pure >>> fmap g)) ≡⟨⟩ bind ((fmap g ∘ pure) ∘ f) ≡⟨ cong bind (sym ℂ.isAssociative) ⟩ bind (fmap g ∘ (pure ∘ f)) ≡⟨ sym distrib ⟩ bind (pure ∘ g) ∘ bind (pure ∘ f) ≡⟨⟩ fmap g ∘ fmap f ∎ where distrib : fmap g ∘ fmap f ≡ bind (fmap g ∘ (pure ∘ f)) distrib = isDistributive (pure ∘ g) (pure ∘ f) -- | This formulation gives rise to the following endo-functor. private rawR : RawFunctor ℂ ℂ RawFunctor.func* rawR = omap RawFunctor.func→ rawR = fmap isFunctorR : IsFunctor ℂ ℂ rawR IsFunctor.isIdentity isFunctorR = begin bind (pure ∘ 𝟙) ≡⟨ cong bind (proj₁ ℂ.isIdentity) ⟩ bind pure ≡⟨ isIdentity ⟩ 𝟙 ∎ IsFunctor.isDistributive isFunctorR {f = f} {g} = begin bind (pure ∘ (g ∘ f)) ≡⟨⟩ fmap (g ∘ f) ≡⟨ fusion ⟩ fmap g ∘ fmap f ≡⟨⟩ bind (pure ∘ g) ∘ bind (pure ∘ f) ∎ -- TODO: Naming! R : EndoFunctor ℂ Functor.raw R = rawR Functor.isFunctor R = isFunctorR private open NaturalTransformation ℂ ℂ R⁰ : EndoFunctor ℂ R⁰ = F.identity R² : EndoFunctor ℂ R² = F[ R ∘ R ] module R = Functor R module R⁰ = Functor R⁰ module R² = Functor R² pureT : Transformation R⁰ R pureT A = pure pureN : Natural R⁰ R pureT pureN {A} {B} f = begin pureT B ∘ R⁰.func→ f ≡⟨⟩ pure ∘ f ≡⟨ sym (isNatural _) ⟩ bind (pure ∘ f) ∘ pure ≡⟨⟩ fmap f ∘ pure ≡⟨⟩ R.func→ f ∘ pureT A ∎ joinT : Transformation R² R joinT C = join joinN : Natural R² R joinT joinN f = begin join ∘ R².func→ f ≡⟨⟩ bind 𝟙 ∘ R².func→ f ≡⟨⟩ R².func→ f >>> bind 𝟙 ≡⟨⟩ fmap (fmap f) >>> bind 𝟙 ≡⟨⟩ fmap (bind (f >>> pure)) >>> bind 𝟙 ≡⟨⟩ bind (bind (f >>> pure) >>> pure) >>> bind 𝟙 ≡⟨ isDistributive _ _ ⟩ bind ((bind (f >>> pure) >>> pure) >=> 𝟙) ≡⟨⟩ bind ((bind (f >>> pure) >>> pure) >>> bind 𝟙) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (bind (f >>> pure) >>> (pure >>> bind 𝟙)) ≡⟨ cong (λ φ → bind (bind (f >>> pure) >>> φ)) (isNatural _) ⟩ bind (bind (f >>> pure) >>> 𝟙) ≡⟨ cong bind (proj₂ ℂ.isIdentity) ⟩ bind (bind (f >>> pure)) ≡⟨ cong bind (sym (proj₁ ℂ.isIdentity)) ⟩ bind (𝟙 >>> bind (f >>> pure)) ≡⟨⟩ bind (𝟙 >=> (f >>> pure)) ≡⟨ sym (isDistributive _ _) ⟩ bind 𝟙 >>> bind (f >>> pure) ≡⟨⟩ bind 𝟙 >>> fmap f ≡⟨⟩ bind 𝟙 >>> R.func→ f ≡⟨⟩ R.func→ f ∘ bind 𝟙 ≡⟨⟩ R.func→ f ∘ join ∎ pureNT : NaturalTransformation R⁰ R proj₁ pureNT = pureT proj₂ pureNT = pureN joinNT : NaturalTransformation R² R proj₁ joinNT = joinT proj₂ joinNT = joinN isNaturalForeign : IsNaturalForeign isNaturalForeign = begin fmap join >>> join ≡⟨⟩ bind (join >>> pure) >>> bind 𝟙 ≡⟨ isDistributive _ _ ⟩ bind ((join >>> pure) >>> bind 𝟙) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (join >>> (pure >>> bind 𝟙)) ≡⟨ cong (λ φ → bind (join >>> φ)) (isNatural _) ⟩ bind (join >>> 𝟙) ≡⟨ cong bind (proj₂ ℂ.isIdentity) ⟩ bind join ≡⟨⟩ bind (bind 𝟙) ≡⟨ cong bind (sym (proj₁ ℂ.isIdentity)) ⟩ bind (𝟙 >>> bind 𝟙) ≡⟨⟩ bind (𝟙 >=> 𝟙) ≡⟨ sym (isDistributive _ _) ⟩ bind 𝟙 >>> bind 𝟙 ≡⟨⟩ join >>> join ∎ isInverse : IsInverse isInverse = inv-l , inv-r where inv-l = begin pure >>> join ≡⟨⟩ pure >>> bind 𝟙 ≡⟨ isNatural _ ⟩ 𝟙 ∎ inv-r = begin fmap pure >>> join ≡⟨⟩ bind (pure >>> pure) >>> bind 𝟙 ≡⟨ isDistributive _ _ ⟩ bind ((pure >>> pure) >=> 𝟙) ≡⟨⟩ bind ((pure >>> pure) >>> bind 𝟙) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (pure >>> (pure >>> bind 𝟙)) ≡⟨ cong (λ φ → bind (pure >>> φ)) (isNatural _) ⟩ bind (pure >>> 𝟙) ≡⟨ cong bind (proj₂ ℂ.isIdentity) ⟩ bind pure ≡⟨ isIdentity ⟩ 𝟙 ∎ record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public module _ (raw : RawMonad) where open RawMonad raw propIsIdentity : isProp IsIdentity propIsIdentity x y i = ℂ.arrowsAreSets _ _ x y i propIsNatural : isProp IsNatural propIsNatural x y i = λ f → ℂ.arrowsAreSets _ _ (x f) (y f) i propIsDistributive : isProp IsDistributive propIsDistributive x y i = λ g f → ℂ.arrowsAreSets _ _ (x g f) (y g f) i open IsMonad propIsMonad : (raw : _) → isProp (IsMonad raw) IsMonad.isIdentity (propIsMonad raw x y i) = propIsIdentity raw (isIdentity x) (isIdentity y) i IsMonad.isNatural (propIsMonad raw x y i) = propIsNatural raw (isNatural x) (isNatural y) i IsMonad.isDistributive (propIsMonad raw x y i) = propIsDistributive raw (isDistributive x) (isDistributive y) i module _ {m n : Monad} (eq : Monad.raw m ≡ Monad.raw n) where private eqIsMonad : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] eqIsMonad = lemPropF propIsMonad eq Monad≡ : m ≡ n Monad.raw (Monad≡ i) = eq i Monad.isMonad (Monad≡ i) = eqIsMonad i -- | The monoidal- and kleisli presentation of monads are equivalent. -- -- This is problem 2.3 in [voe]. module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where private module ℂ = Category ℂ open ℂ using (Object ; Arrow ; 𝟙 ; _∘_ ; _>>>_) open Functor using (func* ; func→) module M = Monoidal ℂ module K = Kleisli ℂ module _ (m : M.RawMonad) where open M.RawMonad m forthRaw : K.RawMonad K.RawMonad.omap forthRaw = Romap K.RawMonad.pure forthRaw = pureT _ K.RawMonad.bind forthRaw = bind module _ {raw : M.RawMonad} (m : M.IsMonad raw) where private module MI = M.IsMonad m forthIsMonad : K.IsMonad (forthRaw raw) K.IsMonad.isIdentity forthIsMonad = proj₂ MI.isInverse K.IsMonad.isNatural forthIsMonad = MI.isNatural K.IsMonad.isDistributive forthIsMonad = MI.isDistributive forth : M.Monad → K.Monad Kleisli.Monad.raw (forth m) = forthRaw (M.Monad.raw m) Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m) module _ (m : K.Monad) where private open K.Monad m module MR = M.RawMonad module MI = M.IsMonad backRaw : M.RawMonad MR.R backRaw = R MR.pureNT backRaw = pureNT MR.joinNT backRaw = joinNT private open MR backRaw module R = Functor (MR.R backRaw) backIsMonad : M.IsMonad backRaw MI.isAssociative backIsMonad {X} = begin joinT X ∘ R.func→ (joinT X) ≡⟨⟩ join ∘ fmap (joinT X) ≡⟨⟩ join ∘ fmap join ≡⟨ isNaturalForeign ⟩ join ∘ join ≡⟨⟩ joinT X ∘ joinT (R.func* X) ∎ MI.isInverse backIsMonad {X} = inv-l , inv-r where inv-l = begin joinT X ∘ pureT (R.func* X) ≡⟨⟩ join ∘ pure ≡⟨ proj₁ isInverse ⟩ 𝟙 ∎ inv-r = begin joinT X ∘ R.func→ (pureT X) ≡⟨⟩ join ∘ fmap pure ≡⟨ proj₂ isInverse ⟩ 𝟙 ∎ back : K.Monad → M.Monad Monoidal.Monad.raw (back m) = backRaw m Monoidal.Monad.isMonad (back m) = backIsMonad m -- I believe all the proofs here should be `refl`. module _ (m : K.Monad) where open K.Monad m -- open K.RawMonad (K.Monad.raw m) bindEq : ∀ {X Y} → K.RawMonad.bind (forthRaw (backRaw m)) {X} {Y} ≡ K.RawMonad.bind (K.Monad.raw m) bindEq {X} {Y} = begin K.RawMonad.bind (forthRaw (backRaw m)) ≡⟨⟩ (λ f → joinT Y ∘ func→ R f) ≡⟨⟩ (λ f → join ∘ fmap f) ≡⟨⟩ (λ f → bind (f >>> pure) >>> bind 𝟙) ≡⟨ funExt lem ⟩ (λ f → bind f) ≡⟨⟩ bind ∎ where joinT = proj₁ joinNT lem : (f : Arrow X (omap Y)) → bind (f >>> pure) >>> bind 𝟙 ≡ bind f lem f = begin bind (f >>> pure) >>> bind 𝟙 ≡⟨ isDistributive _ _ ⟩ bind ((f >>> pure) >>> bind 𝟙) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (f >>> (pure >>> bind 𝟙)) ≡⟨ cong (λ φ → bind (f >>> φ)) (isNatural _) ⟩ bind (f >>> 𝟙) ≡⟨ cong bind (proj₂ ℂ.isIdentity) ⟩ bind f ∎ _&_ : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} → A → (A → B) → B x & f = f x forthRawEq : forthRaw (backRaw m) ≡ K.Monad.raw m K.RawMonad.omap (forthRawEq _) = omap K.RawMonad.pure (forthRawEq _) = pure -- stuck K.RawMonad.bind (forthRawEq i) = bindEq i fortheq : (m : K.Monad) → forth (back m) ≡ m fortheq m = K.Monad≡ (forthRawEq m) module _ (m : M.Monad) where open M.RawMonad (M.Monad.raw m) rawEq* : Functor.func* (K.Monad.R (forth m)) ≡ Functor.func* R rawEq* = refl left = Functor.raw (K.Monad.R (forth m)) right = Functor.raw R P : (omap : Omap ℂ ℂ) → (eq : RawFunctor.func* left ≡ omap) → (fmap' : Fmap ℂ ℂ omap) → Set _ P _ eq fmap' = (λ i → Fmap ℂ ℂ (eq i)) [ RawFunctor.func→ left ≡ fmap' ] module KM = K.Monad (forth m) rawEq→ : (λ i → Fmap ℂ ℂ (refl i)) [ Functor.func→ (K.Monad.R (forth m)) ≡ Functor.func→ R ] -- aka: -- -- rawEq→ : P (RawFunctor.func* right) refl (RawFunctor.func→ right) rawEq→ = begin (λ f → RawFunctor.func→ left f) ≡⟨⟩ (λ f → KM.fmap f) ≡⟨⟩ (λ f → KM.bind (f >>> KM.pure)) ≡⟨ {!!} ⟩ (λ f → Rfmap f) ≡⟨⟩ (λ f → RawFunctor.func→ right f) ∎ -- This goal is more general than the above goal which I also don't know -- how to close. p : (fmap' : Fmap ℂ ℂ (RawFunctor.func* left)) → (λ i → Fmap ℂ ℂ Romap) [ RawFunctor.func→ left ≡ fmap' ] -- aka: -- -- p : P (RawFunctor.func* left) refl p fmap' = begin (λ f → RawFunctor.func→ left f) ≡⟨⟩ (λ f → KM.fmap f) ≡⟨⟩ (λ f → KM.bind (f >>> KM.pure)) ≡⟨ {!!} ⟩ (λ f → fmap' f) ∎ rawEq : Functor.raw (K.Monad.R (forth m)) ≡ Functor.raw R rawEq = RawFunctor≡ ℂ ℂ {x = left} {right} (λ _ → Romap) p Req : M.RawMonad.R (backRaw (forth m)) ≡ R Req = Functor≡ rawEq open NaturalTransformation ℂ ℂ postulate pureNTEq : (λ i → NaturalTransformation F.identity (Req i)) [ M.RawMonad.pureNT (backRaw (forth m)) ≡ pureNT ] backRawEq : backRaw (forth m) ≡ M.Monad.raw m -- stuck M.RawMonad.R (backRawEq i) = Req i M.RawMonad.pureNT (backRawEq i) = {!!} -- pureNTEq i M.RawMonad.joinNT (backRawEq i) = {!!} backeq : (m : M.Monad) → back (forth m) ≡ m backeq m = M.Monad≡ (backRawEq m) open import Cubical.GradLemma eqv : isEquiv M.Monad K.Monad forth eqv = gradLemma forth back fortheq backeq Monoidal≃Kleisli : M.Monad ≃ K.Monad Monoidal≃Kleisli = forth , eqv