{-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Category.Monad where open import Agda.Primitive open import Data.Product open import Cubical open import Cat.Category open import Cat.Category.Functor as F open import Cat.Category.NaturalTransformation open import Cat.Categories.Fun -- "A monad in the monoidal form" [voe] module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where private ℓ = ℓa ⊔ ℓb open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_) open NaturalTransformation ℂ ℂ record RawMonad : Set ℓ where field -- R ~ m R : Functor ℂ ℂ -- η ~ pure ηNatTrans : NaturalTransformation F.identity R -- μ ~ join μNatTrans : NaturalTransformation F[ R ∘ R ] R η : Transformation F.identity R η = proj₁ ηNatTrans ηNat : Natural F.identity R η ηNat = proj₂ ηNatTrans μ : Transformation F[ R ∘ R ] R μ = proj₁ μNatTrans μNat : Natural F[ R ∘ R ] R μ μNat = proj₂ μNatTrans private module R = Functor R IsAssociative : Set _ IsAssociative = {X : Object} → μ X ∘ R.func→ (μ X) ≡ μ X ∘ μ (R.func* X) IsInverse : Set _ IsInverse = {X : Object} → μ X ∘ η (R.func* X) ≡ 𝟙 × μ X ∘ R.func→ (η X) ≡ 𝟙 IsNatural' = ∀ {X Y f} → μ Y ∘ R.func→ f ∘ η X ≡ f record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isAssociative : IsAssociative isInverse : IsInverse private module R = Functor R module ℂ = Category ℂ isNatural' : IsNatural' isNatural' {X} {Y} {f} = begin μ Y ∘ R.func→ f ∘ η X ≡⟨ sym ℂ.isAssociative ⟩ μ Y ∘ (R.func→ f ∘ η X) ≡⟨ cong (λ φ → μ Y ∘ φ) (sym (ηNat f)) ⟩ μ Y ∘ (η (R.func* Y) ∘ f) ≡⟨ ℂ.isAssociative ⟩ μ Y ∘ η (R.func* Y) ∘ f ≡⟨ cong (λ φ → φ ∘ f) (proj₁ isInverse) ⟩ 𝟙 ∘ f ≡⟨ proj₂ ℂ.isIdentity ⟩ f ∎ record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public postulate propIsMonad : ∀ {raw} → isProp (IsMonad raw) Monad≡ : {m n : Monad} → Monad.raw m ≡ Monad.raw n → m ≡ n Monad.raw (Monad≡ eq i) = eq i Monad.isMonad (Monad≡ {m} {n} eq i) = res i where -- TODO: PathJ nightmare + `propIsMonad`. res : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] res = {!!} -- "A monad in the Kleisli form" [voe] module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where private ℓ = ℓa ⊔ ℓb open Category ℂ using (Arrow ; 𝟙 ; Object ; _∘_ ; _>>>_) -- | Data for a monad. -- -- Note that (>>=) is not expressible in a general category because objects -- are not generally types. record RawMonad : Set ℓ where field RR : Object → Object -- Note name-change from [voe] pure : {X : Object} → ℂ [ X , RR X ] bind : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ] -- | functor map -- -- This should perhaps be defined in a "Klesli-version" of functors as well? fmap : ∀ {A B} → ℂ [ A , B ] → ℂ [ RR A , RR B ] fmap f = bind (pure ∘ f) -- | Composition of monads aka. the kleisli-arrow. _>=>_ : {A B C : Object} → ℂ [ A , RR B ] → ℂ [ B , RR C ] → ℂ [ A , RR C ] f >=> g = f >>> (bind g) -- | Flattening nested monads. join : {A : Object} → ℂ [ RR (RR A) , RR A ] join = bind 𝟙 ------------------ -- * Monad laws -- ------------------ -- There may be better names than what I've chosen here. IsIdentity = {X : Object} → bind pure ≡ 𝟙 {RR X} IsNatural = {X Y : Object} (f : ℂ [ X , RR Y ]) → pure >>> (bind f) ≡ f IsDistributive = {X Y Z : Object} (g : ℂ [ Y , RR Z ]) (f : ℂ [ X , RR Y ]) → (bind f) >>> (bind g) ≡ bind (f >=> g) -- | Functor map fusion. -- -- This is really a functor law. Should we have a kleisli-representation of -- functors as well and make them a super-class? Fusion = {X Y Z : Object} {g : ℂ [ Y , Z ]} {f : ℂ [ X , Y ]} → fmap (g ∘ f) ≡ fmap g ∘ fmap f record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isIdentity : IsIdentity isNatural : IsNatural isDistributive : IsDistributive -- | Map fusion is admissable. fusion : Fusion fusion {g = g} {f} = begin fmap (g ∘ f) ≡⟨⟩ bind ((f >>> g) >>> pure) ≡⟨ cong bind isAssociative ⟩ bind (f >>> (g >>> pure)) ≡⟨ cong (λ φ → bind (f >>> φ)) (sym (isNatural _)) ⟩ bind (f >>> (pure >>> (bind (g >>> pure)))) ≡⟨⟩ bind (f >>> (pure >>> fmap g)) ≡⟨⟩ bind ((fmap g ∘ pure) ∘ f) ≡⟨ cong bind (sym isAssociative) ⟩ bind (fmap g ∘ (pure ∘ f)) ≡⟨ sym lem ⟩ bind (pure ∘ g) ∘ bind (pure ∘ f) ≡⟨⟩ fmap g ∘ fmap f ∎ where open Category ℂ using (isAssociative) lem : fmap g ∘ fmap f ≡ bind (fmap g ∘ (pure ∘ f)) lem = isDistributive (pure ∘ g) (pure ∘ f) record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public postulate propIsMonad : ∀ {raw} → isProp (IsMonad raw) Monad≡ : {m n : Monad} → Monad.raw m ≡ Monad.raw n → m ≡ n Monad.raw (Monad≡ eq i) = eq i Monad.isMonad (Monad≡ {m} {n} eq i) = res i where -- TODO: PathJ nightmare + `propIsMonad`. res : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] res = {!!} -- | The monoidal- and kleisli presentation of monads are equivalent. -- -- This is problem 2.3 in [voe]. module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where private open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_) open Functor using (func* ; func→) module M = Monoidal ℂ module K = Kleisli ℂ -- Note similarity with locally defined things in Kleisly.RawMonad!! module _ (m : M.RawMonad) where private open M.RawMonad m module Kraw = K.RawMonad RR : Object → Object RR = func* R pure : {X : Object} → ℂ [ X , RR X ] pure {X} = η X bind : {X Y : Object} → ℂ [ X , RR Y ] → ℂ [ RR X , RR Y ] bind {X} {Y} f = μ Y ∘ func→ R f forthRaw : K.RawMonad Kraw.RR forthRaw = RR Kraw.pure forthRaw = pure Kraw.bind forthRaw = bind module _ {raw : M.RawMonad} (m : M.IsMonad raw) where private open M.IsMonad m open K.RawMonad (forthRaw raw) module R = Functor R isIdentity : IsIdentity isIdentity {X} = begin bind pure ≡⟨⟩ bind (η X) ≡⟨⟩ μ X ∘ func→ R (η X) ≡⟨ proj₂ isInverse ⟩ 𝟙 ∎ isNatural : IsNatural isNatural {X} {Y} f = begin bind f ∘ pure ≡⟨⟩ bind f ∘ η X ≡⟨⟩ μ Y ∘ R.func→ f ∘ η X ≡⟨ isNatural' ⟩ f ∎ where open NaturalTransformation module ℂ = Category ℂ ηN : Natural ℂ ℂ F.identity R η ηN = proj₂ ηNatTrans isDistributive : IsDistributive isDistributive {X} {Y} {Z} g f = begin bind g ∘ bind f ≡⟨⟩ μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ sym lem2 ⟩ μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨⟩ μ Z ∘ R.func→ (bind g ∘ f) ∎ where -- Proved it in reverse here... otherwise it could be neatly inlined. lem2 : μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡ μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) lem2 = begin μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨ cong (λ φ → μ Z ∘ φ) distrib ⟩ μ Z ∘ (R.func→ (μ Z) ∘ R.func→ (R.func→ g) ∘ R.func→ f) ≡⟨⟩ μ Z ∘ (R.func→ (μ Z) ∘ RR.func→ g ∘ R.func→ f) ≡⟨ {!!} ⟩ -- ●-solver? (μ Z ∘ R.func→ (μ Z)) ∘ (RR.func→ g ∘ R.func→ f) ≡⟨ cong (λ φ → φ ∘ (RR.func→ g ∘ R.func→ f)) lemmm ⟩ (μ Z ∘ μ (R.func* Z)) ∘ (RR.func→ g ∘ R.func→ f) ≡⟨ {!!} ⟩ -- ●-solver? μ Z ∘ μ (R.func* Z) ∘ RR.func→ g ∘ R.func→ f ≡⟨ {!!} ⟩ -- ●-solver + lem4 μ Z ∘ R.func→ g ∘ μ Y ∘ R.func→ f ≡⟨ sym (Category.isAssociative ℂ) ⟩ μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ∎ where module RR = Functor F[ R ∘ R ] distrib : ∀ {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B} → R.func→ (a ∘ b ∘ c) ≡ R.func→ a ∘ R.func→ b ∘ R.func→ c distrib = {!!} comm : ∀ {A B C D E} → {a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B} → a ∘ (b ∘ c ∘ d) ≡ a ∘ b ∘ c ∘ d comm = {!!} μN = proj₂ μNatTrans lemmm : μ Z ∘ R.func→ (μ Z) ≡ μ Z ∘ μ (R.func* Z) lemmm = isAssociative lem4 : μ (R.func* Z) ∘ RR.func→ g ≡ R.func→ g ∘ μ Y lem4 = μN g module KI = K.IsMonad forthIsMonad : K.IsMonad (forthRaw raw) KI.isIdentity forthIsMonad = isIdentity KI.isNatural forthIsMonad = isNatural KI.isDistributive forthIsMonad = isDistributive forth : M.Monad → K.Monad Kleisli.Monad.raw (forth m) = forthRaw (M.Monad.raw m) Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m) module _ (m : K.Monad) where private module ℂ = Category ℂ open K.Monad m open NaturalTransformation ℂ ℂ rawR : RawFunctor ℂ ℂ RawFunctor.func* rawR = RR RawFunctor.func→ rawR f = bind (pure ∘ f) isFunctorR : IsFunctor ℂ ℂ rawR IsFunctor.isIdentity isFunctorR = begin bind (pure ∘ 𝟙) ≡⟨ cong bind (proj₁ ℂ.isIdentity) ⟩ bind pure ≡⟨ isIdentity ⟩ 𝟙 ∎ IsFunctor.isDistributive isFunctorR {f = f} {g} = begin bind (pure ∘ (g ∘ f)) ≡⟨⟩ fmap (g ∘ f) ≡⟨ fusion ⟩ fmap g ∘ fmap f ≡⟨⟩ bind (pure ∘ g) ∘ bind (pure ∘ f) ∎ R : Functor ℂ ℂ Functor.raw R = rawR Functor.isFunctor R = isFunctorR R² : Functor ℂ ℂ R² = F[ R ∘ R ] ηNatTrans : NaturalTransformation F.identity R ηNatTrans = {!!} μNatTrans : NaturalTransformation R² R μNatTrans = {!!} module MR = M.RawMonad backRaw : M.RawMonad MR.R backRaw = R MR.ηNatTrans backRaw = ηNatTrans MR.μNatTrans backRaw = μNatTrans module _ (m : K.Monad) where open K.Monad m open M.RawMonad (backRaw m) module Mis = M.IsMonad backIsMonad : M.IsMonad (backRaw m) backIsMonad = {!!} back : K.Monad → M.Monad Monoidal.Monad.raw (back m) = backRaw m Monoidal.Monad.isMonad (back m) = backIsMonad m -- I believe all the proofs here should be `refl`. module _ (m : K.Monad) where open K.RawMonad (K.Monad.raw m) forthRawEq : forthRaw (backRaw m) ≡ K.Monad.raw m K.RawMonad.RR (forthRawEq _) = RR K.RawMonad.pure (forthRawEq _) = pure -- stuck K.RawMonad.bind (forthRawEq i) = {!!} fortheq : (m : K.Monad) → forth (back m) ≡ m fortheq m = K.Monad≡ (forthRawEq m) module _ (m : M.Monad) where open M.RawMonad (M.Monad.raw m) backRawEq : backRaw (forth m) ≡ M.Monad.raw m -- stuck M.RawMonad.R (backRawEq i) = {!!} M.RawMonad.ηNatTrans (backRawEq i) = {!!} M.RawMonad.μNatTrans (backRawEq i) = {!!} backeq : (m : M.Monad) → back (forth m) ≡ m backeq m = M.Monad≡ (backRawEq m) open import Cubical.GradLemma eqv : isEquiv M.Monad K.Monad forth eqv = gradLemma forth back fortheq backeq Monoidal≃Kleisli : M.Monad ≃ K.Monad Monoidal≃Kleisli = forth , eqv