module Cat.Product where open import Agda.Primitive open import Data.Product open import Cubical open import Cat.Category open Category module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where IsProduct : (π₁ : ℂ [ obj , A ]) (π₂ : ℂ [ obj , B ]) → Set (ℓ ⊔ ℓ') IsProduct π₁ π₂ = ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ]) → ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ × ℂ [ π₂ ∘ x ] ≡ x₂) -- Tip from Andrea; Consider this style for efficiency: -- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'}) -- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where -- field -- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B) -- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂) record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : Object ℂ) : Set (ℓ ⊔ ℓ') where no-eta-equality field obj : Object ℂ proj₁ : ℂ [ obj , A ] proj₂ : ℂ [ obj , B ] {{isProduct}} : IsProduct ℂ proj₁ proj₂ arrowProduct : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ]) → ℂ [ X , obj ] arrowProduct π₁ π₂ = proj₁ (isProduct π₁ π₂) record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where field product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B open Product objectProduct : (A B : Object ℂ) → Object ℂ objectProduct A B = Product.obj (product A B) -- The product mentioned in awodey in Def 6.1 is not the regular product of arrows. -- It's a "parallel" product parallelProduct : {A A' B B' : Object ℂ} → ℂ [ A , A' ] → ℂ [ B , B' ] → ℂ [ objectProduct A B , objectProduct A' B' ] parallelProduct {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B') (ℂ [ a ∘ (product A B) .proj₁ ]) (ℂ [ b ∘ (product A B) .proj₂ ])