-- This module Essentially just provides the data for natural transformations -- -- This includes: -- -- The types: -- -- * Transformation - a family of functors -- * Natural - naturality condition for transformations -- * NaturalTransformation - both of the above -- -- Elements of the above: -- -- * identityTrans - the identity transformation -- * identityNatural - naturality for the above -- * identity - both of the above -- -- Functions for manipulating the above: -- -- * A composition operator. {-# OPTIONS --allow-unsolved-metas --cubical #-} module Cat.Category.NaturalTransformation where open import Agda.Primitive open import Data.Product open import Data.Nat using (_≤_ ; z≤n ; s≤s) module Nat = Data.Nat open import Cubical open import Cubical.Sigma open import Cubical.NType.Properties open import Cat.Category open import Cat.Category.Functor hiding (identity) open import Cat.Wishlist module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where open Category using (Object ; 𝟙) private module ℂ = Category ℂ module 𝔻 = Category 𝔻 module _ (F G : Functor ℂ 𝔻) where private module F = Functor F module G = Functor G -- What do you call a non-natural tranformation? Transformation : Set (ℓc ⊔ ℓd') Transformation = (C : Object ℂ) → 𝔻 [ F.func* C , G.func* C ] Natural : Transformation → Set (ℓc ⊔ (ℓc' ⊔ ℓd')) Natural θ = {A B : Object ℂ} → (f : ℂ [ A , B ]) → 𝔻 [ θ B ∘ F.func→ f ] ≡ 𝔻 [ G.func→ f ∘ θ A ] NaturalTransformation : Set (ℓc ⊔ ℓc' ⊔ ℓd') NaturalTransformation = Σ Transformation Natural -- Think I need propPi and that arrows are sets propIsNatural : (θ : _) → isProp (Natural θ) propIsNatural θ x y i {A} {B} f = 𝔻.arrowsAreSets _ _ (x f) (y f) i NaturalTransformation≡ : {α β : NaturalTransformation} → (eq₁ : α .proj₁ ≡ β .proj₁) → α ≡ β NaturalTransformation≡ eq = lemSig propIsNatural _ _ eq identityTrans : (F : Functor ℂ 𝔻) → Transformation F F identityTrans F C = 𝟙 𝔻 identityNatural : (F : Functor ℂ 𝔻) → Natural F F (identityTrans F) identityNatural F {A = A} {B = B} f = begin 𝔻 [ identityTrans F B ∘ F→ f ] ≡⟨⟩ 𝔻 [ 𝟙 𝔻 ∘ F→ f ] ≡⟨ proj₂ 𝔻.isIdentity ⟩ F→ f ≡⟨ sym (proj₁ 𝔻.isIdentity) ⟩ 𝔻 [ F→ f ∘ 𝟙 𝔻 ] ≡⟨⟩ 𝔻 [ F→ f ∘ identityTrans F A ] ∎ where module F = Functor F F→ = F.func→ identity : (F : Functor ℂ 𝔻) → NaturalTransformation F F identity F = identityTrans F , identityNatural F module _ {F G H : Functor ℂ 𝔻} where private module F = Functor F module G = Functor G module H = Functor H T[_∘_] : Transformation G H → Transformation F G → Transformation F H T[ θ ∘ η ] C = 𝔻 [ θ C ∘ η C ] NT[_∘_] : NaturalTransformation G H → NaturalTransformation F G → NaturalTransformation F H proj₁ NT[ (θ , _) ∘ (η , _) ] = T[ θ ∘ η ] proj₂ NT[ (θ , θNat) ∘ (η , ηNat) ] {A} {B} f = begin 𝔻 [ T[ θ ∘ η ] B ∘ F.func→ f ] ≡⟨⟩ 𝔻 [ 𝔻 [ θ B ∘ η B ] ∘ F.func→ f ] ≡⟨ sym 𝔻.isAssociative ⟩ 𝔻 [ θ B ∘ 𝔻 [ η B ∘ F.func→ f ] ] ≡⟨ cong (λ φ → 𝔻 [ θ B ∘ φ ]) (ηNat f) ⟩ 𝔻 [ θ B ∘ 𝔻 [ G.func→ f ∘ η A ] ] ≡⟨ 𝔻.isAssociative ⟩ 𝔻 [ 𝔻 [ θ B ∘ G.func→ f ] ∘ η A ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ η A ]) (θNat f) ⟩ 𝔻 [ 𝔻 [ H.func→ f ∘ θ A ] ∘ η A ] ≡⟨ sym 𝔻.isAssociative ⟩ 𝔻 [ H.func→ f ∘ 𝔻 [ θ A ∘ η A ] ] ≡⟨⟩ 𝔻 [ H.func→ f ∘ T[ θ ∘ η ] A ] ∎ module _ {F G : Functor ℂ 𝔻} where transformationIsSet : isSet (Transformation F G) transformationIsSet _ _ p q i j C = 𝔻.arrowsAreSets _ _ (λ l → p l C) (λ l → q l C) i j naturalIsProp : (θ : Transformation F G) → isProp (Natural F G θ) naturalIsProp θ θNat θNat' = lem where lem : (λ _ → Natural F G θ) [ (λ f → θNat f) ≡ (λ f → θNat' f) ] lem = λ i f → 𝔻.arrowsAreSets _ _ (θNat f) (θNat' f) i naturalTransformationIsSet : isSet (NaturalTransformation F G) naturalTransformationIsSet = sigPresSet transformationIsSet λ θ → ntypeCommulative (s≤s {n = Nat.suc Nat.zero} z≤n) (naturalIsProp θ)