{-# OPTIONS --cubical #-} module Category where open import Agda.Primitive open import Data.Unit.Base open import Data.Product open import Cubical.PathPrelude open import Data.Empty postulate undefined : {ℓ : Level} → {A : Set ℓ} → A record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where constructor category field Object : Set ℓ Arrow : Object → Object → Set ℓ' 𝟙 : {o : Object} → Arrow o o _⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } → h ⊕ (g ⊕ f) ≡ (h ⊕ g) ⊕ f ident : { A B : Object } { f : Arrow A B } → f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f infixl 45 _⊕_ domain : { a b : Object } → Arrow a b → Object domain {a = a} _ = a codomain : { a b : Object } → Arrow a b → Object codomain {b = b} _ = b open Category public record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'}) : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where constructor functor private open module C = Category C open module D = Category D field func* : C.Object → D.Object func→ : {dom cod : C.Object} → C.Arrow dom cod → D.Arrow (func* dom) (func* cod) ident : { c : C.Object } → func→ (C.𝟙 {c}) ≡ D.𝟙 {func* c} -- TODO: Avoid use of ugly explicit arguments somehow. -- This guy managed to do it: -- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''} → func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a module _ {ℓ ℓ' : Level} {A B C : Category {ℓ} {ℓ'}} (F : Functor B C) (G : Functor A B) where private open module F = Functor F open module G = Functor G open module A = Category A open module B = Category B open module C = Category C F* = F.func* F→ = F.func→ G* = G.func* G→ = G.func→ module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where dist : (F→ ∘ G→) (α1 A.⊕ α0) ≡ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 dist = begin (F→ ∘ G→) (α1 A.⊕ α0) ≡⟨ refl ⟩ F→ (G→ (α1 A.⊕ α0)) ≡⟨ cong F→ G.distrib ⟩ F→ ((G→ α1) B.⊕ (G→ α0)) ≡⟨ F.distrib ⟩ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 ∎ functor-comp : Functor A C functor-comp = record { func* = F* ∘ G* ; func→ = F→ ∘ G→ ; ident = begin (F→ ∘ G→) (A.𝟙) ≡⟨ refl ⟩ F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident ⟩ F→ (B.𝟙) ≡⟨ F.ident ⟩ C.𝟙 ∎ ; distrib = dist } -- The identity functor identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C -- Identity = record { F* = λ x → x ; F→ = λ x → x ; ident = refl ; distrib = refl } identity = functor (λ x → x) (λ x → x) (refl) (refl) module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where private open module ℂ = Category ℂ _+_ = ℂ._⊕_ Isomorphism : (f : ℂ.Arrow A B) → Set ℓ' Isomorphism f = Σ[ g ∈ ℂ.Arrow B A ] g + f ≡ ℂ.𝟙 × f + g ≡ ℂ.𝟙 Epimorphism : {X : ℂ.Object } → (f : ℂ.Arrow A B) → Set ℓ' Epimorphism {X} f = ( g₀ g₁ : ℂ.Arrow B X ) → g₀ + f ≡ g₁ + f → g₀ ≡ g₁ Monomorphism : {X : ℂ.Object} → (f : ℂ.Arrow A B) → Set ℓ' Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁ iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f -- Idea: Pre-compose with f- on both sides of the equality of eq to get -- g₀ + f + f- ≡ g₁ + f + f- -- which by left-inv reduces to the goal. iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq = trans (sym (fst ℂ.ident)) ( trans (cong (_+_ g₀) (sym right-inv)) ( trans ℂ.assoc ( trans (cong (λ x → x + f-) eq) ( trans (sym ℂ.assoc) ( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident)) ) ) ) ) iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f -- For the next goal we do something similar: Post-compose with f- and use -- right-inv to get the goal. iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq = trans (sym (snd ℂ.ident)) ( trans (cong (λ x → x + g₀) (sym left-inv)) ( trans (sym ℂ.assoc) ( trans (cong (_+_ f-) eq) ( trans ℂ.assoc ( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident) ) ) ) ) ) iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso {- epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f) epi-mono-is-not-iso f = let k = f {!!} {!!} {!!} {!!} in {!!} -} -- Isomorphism of objects _≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ' _≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f) where open module ℂ = Category ℂ Product : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ} Product C D = record { Object = C.Object × D.Object ; Arrow = λ { (c , d) (c' , d') → let carr = C.Arrow c c' darr = D.Arrow d d' in carr × darr} ; 𝟙 = C.𝟙 , D.𝟙 ; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D} ; assoc = eqpair C.assoc D.assoc ; ident = let (Cl , Cr) = C.ident (Dl , Dr) = D.ident in eqpair Cl Dl , eqpair Cr Dr } where open module C = Category C open module D = Category D -- Two pairs are equal if their components are equal. eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)})) Opposite : ∀ {ℓ ℓ'} → Category {ℓ} {ℓ'} → Category {ℓ} {ℓ'} Opposite ℂ = record { Object = ℂ.Object ; Arrow = λ A B → ℂ.Arrow B A ; 𝟙 = ℂ.𝟙 ; _⊕_ = λ g f → f ℂ.⊕ g ; assoc = sym ℂ.assoc ; ident = swap ℂ.ident } where open module ℂ = Category ℂ -- The category of categories module _ {ℓ ℓ' : Level} where private _⊛_ = functor-comp module _ {A B C D : Category {ℓ} {ℓ'}} {f : Functor A B} {g : Functor B C} {h : Functor C D} where assc : h ⊛ (g ⊛ f) ≡ (h ⊛ g) ⊛ f assc = {!!} module _ {A B : Category {ℓ} {ℓ'}} where lift-eq : (f g : Functor A B) → (eq* : Functor.func* f ≡ Functor.func* g) -- TODO: Must transport here using the equality from above. -- Reason: -- func→ : Arrow A dom cod → Arrow B (func* dom) (func* cod) -- func→₁ : Arrow A dom cod → Arrow B (func*₁ dom) (func*₁ cod) -- In other words, func→ and func→₁ does not have the same type. -- → Functor.func→ f ≡ Functor.func→ g -- → Functor.ident f ≡ Functor.ident g -- → Functor.distrib f ≡ Functor.distrib g → f ≡ g lift-eq (functor func* func→ idnt distrib) (functor func*₁ func→₁ idnt₁ distrib₁) eq-func* = {!!} module _ {A B : Category {ℓ} {ℓ'}} {f : Functor A B} where idHere = identity {ℓ} {ℓ'} {A} lem : (Functor.func* f) ∘ (Functor.func* idHere) ≡ Functor.func* f lem = refl ident-r : f ⊛ identity ≡ f ident-r = lift-eq (f ⊛ identity) f refl ident-l : identity ⊛ f ≡ f ident-l = {!!} CatCat : Category {ℓ-suc (ℓ ⊔ ℓ')} {ℓ ⊔ ℓ'} CatCat = record { Object = Category {ℓ} {ℓ'} ; Arrow = Functor ; 𝟙 = identity ; _⊕_ = functor-comp ; assoc = {!!} ; ident = ident-r , ident-l } Hom : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → (A B : Object ℂ) → Set ℓ' Hom {ℂ = ℂ} A B = Arrow ℂ A B module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where private Obj = Object ℂ Arr = Arrow ℂ _+_ = _⊕_ ℂ HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B') → Hom {ℂ = ℂ} A B → Hom {ℂ = ℂ} A B' HomFromArrow _A g = λ f → g + f