{-# OPTIONS --allow-unsolved-metas #-} module Cat.Category.Properties where open import Agda.Primitive open import Data.Product open import Cubical.PathPrelude open import Cat.Category open import Cat.Functor open import Cat.Categories.Sets module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : ℂ .Category.Object } {X : ℂ .Category.Object} (f : ℂ .Category.Arrow A B) where open Category ℂ open IsCategory (isCategory) iso-is-epi : Isomorphism {ℂ = ℂ} f → Epimorphism {ℂ = ℂ} {X = X} f iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin g₀ ≡⟨ sym (proj₁ ident) ⟩ g₀ ⊕ 𝟙 ≡⟨ cong (_⊕_ g₀) (sym right-inv) ⟩ g₀ ⊕ (f ⊕ f-) ≡⟨ assoc ⟩ (g₀ ⊕ f) ⊕ f- ≡⟨ cong (λ φ → φ ⊕ f-) eq ⟩ (g₁ ⊕ f) ⊕ f- ≡⟨ sym assoc ⟩ g₁ ⊕ (f ⊕ f-) ≡⟨ cong (_⊕_ g₁) right-inv ⟩ g₁ ⊕ 𝟙 ≡⟨ proj₁ ident ⟩ g₁ ∎ iso-is-mono : Isomorphism {ℂ = ℂ} f → Monomorphism {ℂ = ℂ} {X = X} f iso-is-mono (f- , (left-inv , right-inv)) g₀ g₁ eq = begin g₀ ≡⟨ sym (proj₂ ident) ⟩ 𝟙 ⊕ g₀ ≡⟨ cong (λ φ → φ ⊕ g₀) (sym left-inv) ⟩ (f- ⊕ f) ⊕ g₀ ≡⟨ sym assoc ⟩ f- ⊕ (f ⊕ g₀) ≡⟨ cong (_⊕_ f-) eq ⟩ f- ⊕ (f ⊕ g₁) ≡⟨ assoc ⟩ (f- ⊕ f) ⊕ g₁ ≡⟨ cong (λ φ → φ ⊕ g₁) left-inv ⟩ 𝟙 ⊕ g₁ ≡⟨ proj₂ ident ⟩ g₁ ∎ iso-is-epi-mono : Isomorphism {ℂ = ℂ} f → Epimorphism {ℂ = ℂ} {X = X} f × Monomorphism {ℂ = ℂ} {X = X} f iso-is-epi-mono iso = iso-is-epi iso , iso-is-mono iso {- epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f) epi-mono-is-not-iso f = let k = f {!!} {!!} {!!} {!!} in {!!} -} module _ {ℓ ℓ'} (ℂ : Category ℓ ℓ') {{hasProducts : HasProducts ℂ}} (B C : ℂ .Category.Object) where open Category open HasProducts hasProducts open Product prod-obj : (A B : ℂ .Object) → ℂ .Object prod-obj A B = Product.obj (product A B) -- The product mentioned in awodey in Def 6.1 is not the regular product of arrows. -- It's a "parallel" product ×A : {A A' B B' : ℂ .Object} → ℂ .Arrow A A' → ℂ .Arrow B B' → ℂ .Arrow (prod-obj A B) (prod-obj A' B') ×A {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B') (ℂ ._⊕_ a ((product A B) .proj₁)) (ℂ ._⊕_ b ((product A B) .proj₂)) IsExponential : {Cᴮ : ℂ .Object} → ℂ .Arrow (prod-obj Cᴮ B) C → Set (ℓ ⊔ ℓ') IsExponential eval = ∀ (A : ℂ .Object) (f : ℂ .Arrow (prod-obj A B) C) → ∃![ f~ ] (ℂ ._⊕_ eval (×A f~ (ℂ .𝟙)) ≡ f) record Exponential : Set (ℓ ⊔ ℓ') where field -- obj ≡ Cᴮ obj : ℂ .Object eval : ℂ .Arrow ( prod-obj obj B ) C {{isExponential}} : IsExponential eval _⇑_ = Exponential -- yoneda : ∀ {ℓ ℓ'} → {ℂ : Category ℓ ℓ'} → Functor ℂ (Sets ⇑ (Opposite ℂ)) -- yoneda = {!!}