module Cat.Categories.Sets where open import Cubical open import Agda.Primitive open import Data.Product open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Category open import Cat.Functor open Category module _ {ℓ : Level} where Sets : Category (lsuc ℓ) ℓ Sets = record { Object = Set ℓ ; Arrow = λ T U → T → U ; 𝟙 = id ; _⊕_ = _∘′_ ; isCategory = record { assoc = refl ; ident = funExt (λ _ → refl) , funExt (λ _ → refl) } } where open import Function private module _ {X A B : Set ℓ} (f : X → A) (g : X → B) where _&&&_ : (X → A × B) _&&&_ x = f x , g x module _ {X A B : Set ℓ} (f : X → A) (g : X → B) where _S⊕_ = Sets ._⊕_ lem : proj₁ S⊕ (f &&& g) ≡ f × snd S⊕ (f &&& g) ≡ g proj₁ lem = refl proj₂ lem = refl instance isProduct : {A B : Sets .Object} → IsProduct Sets {A} {B} fst snd isProduct f g = f &&& g , lem f g product : (A B : Sets .Object) → Product {ℂ = Sets} A B product A B = record { obj = A × B ; proj₁ = fst ; proj₂ = snd ; isProduct = isProduct } instance SetsHasProducts : HasProducts Sets SetsHasProducts = record { product = product } -- Covariant Presheaf Representable : {ℓ ℓ' : Level} → (ℂ : Category ℓ ℓ') → Set (ℓ ⊔ lsuc ℓ') Representable {ℓ' = ℓ'} ℂ = Functor ℂ (Sets {ℓ'}) -- The "co-yoneda" embedding. representable : ∀ {ℓ ℓ'} {ℂ : Category ℓ ℓ'} → Category.Object ℂ → Representable ℂ representable {ℂ = ℂ} A = record { func* = λ B → ℂ .Arrow A B ; func→ = ℂ ._⊕_ ; ident = funExt λ _ → snd ident ; distrib = funExt λ x → sym assoc } where open IsCategory (ℂ .isCategory) -- Contravariant Presheaf Presheaf : ∀ {ℓ ℓ'} (ℂ : Category ℓ ℓ') → Set (ℓ ⊔ lsuc ℓ') Presheaf {ℓ' = ℓ'} ℂ = Functor (Opposite ℂ) (Sets {ℓ'}) -- Alternate name: `yoneda` presheaf : {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} → Category.Object (Opposite ℂ) → Presheaf ℂ presheaf {ℂ = ℂ} B = record { func* = λ A → ℂ .Arrow A B ; func→ = λ f g → ℂ ._⊕_ g f ; ident = funExt λ x → fst ident ; distrib = funExt λ x → assoc } where open IsCategory (ℂ .isCategory)