{-# OPTIONS --allow-unsolved-metas #-} module Cat.Category.Product where open import Agda.Primitive open import Cubical open import Data.Product as P hiding (_×_ ; proj₁ ; proj₂) open import Cat.Category hiding (module Propositionality) module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where open Category ℂ module _ (A B : Object) where record RawProduct : Set (ℓa ⊔ ℓb) where no-eta-equality field object : Object proj₁ : ℂ [ object , A ] proj₂ : ℂ [ object , B ] -- FIXME Not sure this is actually a proposition - so this name is -- misleading. record IsProduct (raw : RawProduct) : Set (ℓa ⊔ ℓb) where open RawProduct raw public field isProduct : ∀ {X : Object} (f : ℂ [ X , A ]) (g : ℂ [ X , B ]) → ∃![ f×g ] (ℂ [ proj₁ ∘ f×g ] ≡ f P.× ℂ [ proj₂ ∘ f×g ] ≡ g) -- | Arrow product _P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ]) → ℂ [ X , object ] _P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂) record Product : Set (ℓa ⊔ ℓb) where field raw : RawProduct isProduct : IsProduct raw open IsProduct isProduct public record HasProducts : Set (ℓa ⊔ ℓb) where field product : ∀ (A B : Object) → Product A B _×_ : Object → Object → Object A × B = Product.object (product A B) -- | Parallel product of arrows -- -- The product mentioned in awodey in Def 6.1 is not the regular product of -- arrows. It's a "parallel" product module _ {A A' B B' : Object} where open Product open Product (product A B) hiding (_P[_×_]) renaming (proj₁ to fst ; proj₂ to snd) _|×|_ : ℂ [ A , A' ] → ℂ [ B , B' ] → ℂ [ A × B , A' × B' ] f |×| g = product A' B' P[ ℂ [ f ∘ fst ] × ℂ [ g ∘ snd ] ] module Propositionality {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} {A B : Category.Object ℂ} where propProduct : isProp (Product ℂ A B) propProduct = {!!} propHasProducts : isProp (HasProducts ℂ) propHasProducts = {!!}