{-# OPTIONS --allow-unsolved-metas #-} module Cat.Categories.Sets where open import Cubical.PathPrelude open import Agda.Primitive open import Data.Product open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Category open import Cat.Functor -- Sets are built-in to Agda. The set of all small sets is called Set. Fun : {ℓ : Level} → ( T U : Set ℓ ) → Set ℓ Fun T U = T → U Sets : {ℓ : Level} → Category {lsuc ℓ} {ℓ} Sets {ℓ} = record { Object = Set ℓ ; Arrow = λ T U → Fun {ℓ} T U ; 𝟙 = λ x → x ; _⊕_ = λ g f x → g ( f x ) ; assoc = refl ; ident = funExt (λ x → refl) , funExt (λ x → refl) } module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where private C-Obj = Object ℂ _+_ = Arrow ℂ RepFunctor : Functor ℂ Sets RepFunctor = record { func* = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B ; func→ = λ { {c} {c'} f g → {!HomFromArrow {ℂ = {!!}} c' g!} } ; ident = {!!} ; distrib = {!!} } Hom0 : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object ℂ → Functor ℂ (Sets {ℓ'}) Hom0 {ℂ = ℂ} A = record { func* = λ B → ℂ.Arrow A B ; func→ = λ f g → f ℂ.⊕ g ; ident = funExt λ _ → snd ℂ.ident ; distrib = funExt λ x → sym ℂ.assoc } where open module ℂ = Category ℂ Hom1 : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → Category.Object ℂ → Functor (Opposite ℂ) (Sets {ℓ'}) Hom1 {ℂ = ℂ} B = record { func* = λ A → ℂ.Arrow A B ; func→ = λ f g → {!!} ℂ.⊕ {!!} ; ident = {!!} ; distrib = {!!} } where open module ℂ = Category ℂ