{-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Categories.Cat where open import Agda.Primitive open import Cubical open import Function open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Category open import Cat.Functor -- Tip from Andrea: -- Use co-patterns - they help with showing more understandable types in goals. lift-eq : ∀ {ℓ} {A B : Set ℓ} {a a' : A} {b b' : B} → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') fst (lift-eq a b i) = a i snd (lift-eq a b i) = b i eqpair : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} {a a' : A} {b b' : B} → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') eqpair eqa eqb i = eqa i , eqb i open Functor open Category -- The category of categories module _ (ℓ ℓ' : Level) where private module _ {A B C D : Category ℓ ℓ'} {f : Functor A B} {g : Functor B C} {h : Functor C D} where private eq* : func* (h ∘f (g ∘f f)) ≡ func* ((h ∘f g) ∘f f) eq* = refl eq→ : PathP (λ i → {x y : A .Object} → A .Arrow x y → D .Arrow (eq* i x) (eq* i y)) (func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f)) eq→ = refl id-l = (h ∘f (g ∘f f)) .ident -- = func→ (h ∘f (g ∘f f)) (𝟙 A) ≡ 𝟙 D id-r = ((h ∘f g) ∘f f) .ident -- = func→ ((h ∘f g) ∘f f) (𝟙 A) ≡ 𝟙 D postulate eqI : PathP (λ i → ∀ {c : A .Object} → eq→ i (A .𝟙 {c}) ≡ D .𝟙 {eq* i c}) (ident ((h ∘f (g ∘f f)))) (ident ((h ∘f g) ∘f f)) postulate eqD : PathP (λ i → { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''} → eq→ i (A ._⊕_ a' a) ≡ D ._⊕_ (eq→ i a') (eq→ i a)) (distrib (h ∘f (g ∘f f))) (distrib ((h ∘f g) ∘f f)) assc : h ∘f (g ∘f f) ≡ (h ∘f g) ∘f f assc = Functor≡ eq* eq→ eqI eqD module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where module _ where private eq* : (func* F) ∘ (func* (identity {C = ℂ})) ≡ func* F eq* = refl -- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f eq→ : PathP (λ i → {x y : Object ℂ} → Arrow ℂ x y → Arrow 𝔻 (func* F x) (func* F y)) (func→ (F ∘f identity)) (func→ F) eq→ = refl postulate eqI-r : PathP (λ i → {c : ℂ .Object} → PathP (λ _ → Arrow 𝔻 (func* F c) (func* F c)) (func→ F (ℂ .𝟙)) (𝔻 .𝟙)) (ident (F ∘f identity)) (ident F) eqD-r : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} → eq→ i (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (eq→ i g) (eq→ i f)) ((F ∘f identity) .distrib) (distrib F) ident-r : F ∘f identity ≡ F ident-r = Functor≡ eq* eq→ eqI-r eqD-r module _ where private postulate eq* : (identity ∘f F) .func* ≡ F .func* eq→ : PathP (λ i → {x y : Object ℂ} → ℂ .Arrow x y → 𝔻 .Arrow (eq* i x) (eq* i y)) ((identity ∘f F) .func→) (F .func→) eqI : PathP (λ i → ∀ {A : ℂ .Object} → eq→ i (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A}) (ident (identity ∘f F)) (ident F) eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} → eq→ i (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (eq→ i g) (eq→ i f)) (distrib (identity ∘f F)) (distrib F) ident-l : identity ∘f F ≡ F ident-l = Functor≡ eq* eq→ eqI eqD Cat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ') Cat = record { Object = Category ℓ ℓ' ; Arrow = Functor ; 𝟙 = identity ; _⊕_ = _∘f_ -- What gives here? Why can I not name the variables directly? ; isCategory = record { assoc = λ {_ _ _ _ f g h} → assc {f = f} {g = g} {h = h} ; ident = ident-r , ident-l } } module _ {ℓ ℓ' : Level} where Catt = Cat ℓ ℓ' module _ (ℂ 𝔻 : Category ℓ ℓ') where private :Object: = ℂ .Object × 𝔻 .Object :Arrow: : :Object: → :Object: → Set ℓ' :Arrow: (c , d) (c' , d') = Arrow ℂ c c' × Arrow 𝔻 d d' :𝟙: : {o : :Object:} → :Arrow: o o :𝟙: = ℂ .𝟙 , 𝔻 .𝟙 _:⊕:_ : {a b c : :Object:} → :Arrow: b c → :Arrow: a b → :Arrow: a c _:⊕:_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → (ℂ ._⊕_) bc∈C ab∈C , 𝔻 ._⊕_ bc∈D ab∈D} instance :isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_ :isCategory: = record { assoc = eqpair C.assoc D.assoc ; ident = eqpair (fst C.ident) (fst D.ident) , eqpair (snd C.ident) (snd D.ident) } where open module C = IsCategory (ℂ .isCategory) open module D = IsCategory (𝔻 .isCategory) :product: : Category ℓ ℓ' :product: = record { Object = :Object: ; Arrow = :Arrow: ; 𝟙 = :𝟙: ; _⊕_ = _:⊕:_ } proj₁ : Arrow Catt :product: ℂ proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl } proj₂ : Arrow Catt :product: 𝔻 proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl } module _ {X : Object Catt} (x₁ : Arrow Catt X ℂ) (x₂ : Arrow Catt X 𝔻) where open Functor -- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D) -- ident' {c = c} = lift-eq (ident x₁) (ident x₂) x : Functor X :product: x = record { func* = λ x → (func* x₁) x , (func* x₂) x ; func→ = λ x → func→ x₁ x , func→ x₂ x ; ident = lift-eq (ident x₁) (ident x₂) ; distrib = lift-eq (distrib x₁) (distrib x₂) } -- Need to "lift equality of functors" -- If I want to do this like I do it for pairs it's gonna be a pain. postulate isUniqL : (Catt ⊕ proj₁) x ≡ x₁ -- isUniqL = Functor≡ refl refl {!!} {!!} postulate isUniqR : (Catt ⊕ proj₂) x ≡ x₂ -- isUniqR = Functor≡ refl refl {!!} {!!} isUniq : (Catt ⊕ proj₁) x ≡ x₁ × (Catt ⊕ proj₂) x ≡ x₂ isUniq = isUniqL , isUniqR uniq : ∃![ x ] ((Catt ⊕ proj₁) x ≡ x₁ × (Catt ⊕ proj₂) x ≡ x₂) uniq = x , isUniq instance isProduct : IsProduct (Cat ℓ ℓ') proj₁ proj₂ isProduct = uniq product : Product {ℂ = (Cat ℓ ℓ')} ℂ 𝔻 product = record { obj = :product: ; proj₁ = proj₁ ; proj₂ = proj₂ } module _ {ℓ ℓ' : Level} where instance hasProducts : HasProducts (Cat ℓ ℓ') hasProducts = record { product = product } -- Basically proves that `Cat ℓ ℓ` is cartesian closed. module _ (ℓ : Level) where private open Data.Product open import Cat.Categories.Fun Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ) Catℓ = Cat ℓ ℓ module _ (ℂ 𝔻 : Category ℓ ℓ) where private _𝔻⊕_ = 𝔻 ._⊕_ _ℂ⊕_ = ℂ ._⊕_ :obj: : Cat ℓ ℓ .Object :obj: = Fun {ℂ = ℂ} {𝔻 = 𝔻} :func*: : Functor ℂ 𝔻 × ℂ .Object → 𝔻 .Object :func*: (F , A) = F .func* A module _ {dom cod : Functor ℂ 𝔻 × ℂ .Object} where private F : Functor ℂ 𝔻 F = proj₁ dom A : ℂ .Object A = proj₂ dom G : Functor ℂ 𝔻 G = proj₁ cod B : ℂ .Object B = proj₂ cod :func→: : (pobj : NaturalTransformation F G × ℂ .Arrow A B) → 𝔻 .Arrow (F .func* A) (G .func* B) :func→: ((θ , θNat) , f) = result where θA : 𝔻 .Arrow (F .func* A) (G .func* A) θA = θ A θB : 𝔻 .Arrow (F .func* B) (G .func* B) θB = θ B F→f : 𝔻 .Arrow (F .func* A) (F .func* B) F→f = F .func→ f G→f : 𝔻 .Arrow (G .func* A) (G .func* B) G→f = G .func→ f l : 𝔻 .Arrow (F .func* A) (G .func* B) l = θB 𝔻⊕ F→f r : 𝔻 .Arrow (F .func* A) (G .func* B) r = G→f 𝔻⊕ θA -- There are two choices at this point, -- but I suppose the whole point is that -- by `θNat f` we have `l ≡ r` -- lem : θ B 𝔻⊕ F .func→ f ≡ G .func→ f 𝔻⊕ θ A -- lem = θNat f result : 𝔻 .Arrow (F .func* A) (G .func* B) result = l _×p_ = product module _ {c : Functor ℂ 𝔻 × ℂ .Object} where private F : Functor ℂ 𝔻 F = proj₁ c C : ℂ .Object C = proj₂ c -- NaturalTransformation F G × ℂ .Arrow A B -- :ident: : :func→: {c} {c} (identityNat F , ℂ .𝟙) ≡ 𝔻 .𝟙 -- :ident: = trans (proj₂ 𝔻.ident) (F .ident) -- where -- _𝔻⊕_ = 𝔻 ._⊕_ -- open module 𝔻 = IsCategory (𝔻 .isCategory) -- Unfortunately the equational version has some ambigous arguments. :ident: : :func→: {c} {c} (identityNat F , ℂ .𝟙 {o = proj₂ c}) ≡ 𝔻 .𝟙 :ident: = begin :func→: {c} {c} ((:obj: ×p ℂ) .Product.obj .𝟙 {c}) ≡⟨⟩ :func→: {c} {c} (identityNat F , ℂ .𝟙) ≡⟨⟩ (identityTrans F C 𝔻⊕ F .func→ (ℂ .𝟙)) ≡⟨⟩ 𝔻 .𝟙 𝔻⊕ F .func→ (ℂ .𝟙) ≡⟨ proj₂ 𝔻.ident ⟩ F .func→ (ℂ .𝟙) ≡⟨ F .ident ⟩ 𝔻 .𝟙 ∎ where open module 𝔻 = IsCategory (𝔻 .isCategory) module _ {F×A G×B H×C : Functor ℂ 𝔻 × ℂ .Object} where F = F×A .proj₁ A = F×A .proj₂ G = G×B .proj₁ B = G×B .proj₂ H = H×C .proj₁ C = H×C .proj₂ -- Not entirely clear what this is at this point: _P⊕_ = (:obj: ×p ℂ) .Product.obj ._⊕_ {F×A} {G×B} {H×C} module _ -- NaturalTransformation F G × ℂ .Arrow A B {θ×f : NaturalTransformation F G × ℂ .Arrow A B} {η×g : NaturalTransformation G H × ℂ .Arrow B C} where private θ : Transformation F G θ = proj₁ (proj₁ θ×f) θNat : Natural F G θ θNat = proj₂ (proj₁ θ×f) f : ℂ .Arrow A B f = proj₂ θ×f η : Transformation G H η = proj₁ (proj₁ η×g) ηNat : Natural G H η ηNat = proj₂ (proj₁ η×g) g : ℂ .Arrow B C g = proj₂ η×g ηθNT : NaturalTransformation F H ηθNT = Fun ._⊕_ {F} {G} {H} (η , ηNat) (θ , θNat) ηθ = proj₁ ηθNT ηθNat = proj₂ ηθNT :distrib: : (η C 𝔻⊕ θ C) 𝔻⊕ F .func→ (g ℂ⊕ f) ≡ (η C 𝔻⊕ G .func→ g) 𝔻⊕ (θ B 𝔻⊕ F .func→ f) :distrib: = begin (ηθ C) 𝔻⊕ F .func→ (g ℂ⊕ f) ≡⟨ ηθNat (g ℂ⊕ f) ⟩ H .func→ (g ℂ⊕ f) 𝔻⊕ (ηθ A) ≡⟨ cong (λ φ → φ 𝔻⊕ ηθ A) (H .distrib) ⟩ (H .func→ g 𝔻⊕ H .func→ f) 𝔻⊕ (ηθ A) ≡⟨ sym assoc ⟩ H .func→ g 𝔻⊕ (H .func→ f 𝔻⊕ (ηθ A)) ≡⟨⟩ H .func→ g 𝔻⊕ (H .func→ f 𝔻⊕ (ηθ A)) ≡⟨ cong (λ φ → H .func→ g 𝔻⊕ φ) assoc ⟩ H .func→ g 𝔻⊕ ((H .func→ f 𝔻⊕ η A) 𝔻⊕ θ A) ≡⟨ cong (λ φ → H .func→ g 𝔻⊕ φ) (cong (λ φ → φ 𝔻⊕ θ A) (sym (ηNat f))) ⟩ H .func→ g 𝔻⊕ ((η B 𝔻⊕ G .func→ f) 𝔻⊕ θ A) ≡⟨ cong (λ φ → H .func→ g 𝔻⊕ φ) (sym assoc) ⟩ H .func→ g 𝔻⊕ (η B 𝔻⊕ (G .func→ f 𝔻⊕ θ A)) ≡⟨ assoc ⟩ (H .func→ g 𝔻⊕ η B) 𝔻⊕ (G .func→ f 𝔻⊕ θ A) ≡⟨ cong (λ φ → φ 𝔻⊕ (G .func→ f 𝔻⊕ θ A)) (sym (ηNat g)) ⟩ (η C 𝔻⊕ G .func→ g) 𝔻⊕ (G .func→ f 𝔻⊕ θ A) ≡⟨ cong (λ φ → (η C 𝔻⊕ G .func→ g) 𝔻⊕ φ) (sym (θNat f)) ⟩ (η C 𝔻⊕ G .func→ g) 𝔻⊕ (θ B 𝔻⊕ F .func→ f) ∎ where open IsCategory (𝔻 .isCategory) :eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻 :eval: = record { func* = :func*: ; func→ = λ {dom} {cod} → :func→: {dom} {cod} ; ident = λ {o} → :ident: {o} ; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y} } module _ (𝔸 : Category ℓ ℓ) (F : Functor ((𝔸 ×p ℂ) .Product.obj) 𝔻) where open HasProducts (hasProducts {ℓ} {ℓ}) using (parallelProduct) postulate transpose : Functor 𝔸 :obj: eq : Catℓ ._⊕_ :eval: (parallelProduct transpose (Catℓ .𝟙 {o = ℂ})) ≡ F catTranspose : ∃![ F~ ] (Catℓ ._⊕_ :eval: (parallelProduct F~ (Catℓ .𝟙 {o = ℂ})) ≡ F) catTranspose = transpose , eq :isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval: :isExponential: = catTranspose -- :exponent: : Exponential (Cat ℓ ℓ) A B :exponent: : Exponential Catℓ ℂ 𝔻 :exponent: = record { obj = :obj: ; eval = :eval: ; isExponential = :isExponential: } hasExponentials : HasExponentials (Cat ℓ ℓ) hasExponentials = record { exponent = :exponent: }