{-# OPTIONS --allow-unsolved-metas --cubical #-} module Cat.Category where open import Agda.Primitive open import Data.Unit.Base open import Data.Product renaming ( proj₁ to fst ; proj₂ to snd ; ∃! to ∃!≈ ) open import Data.Empty import Function open import Cubical hiding (isSet) open import Cubical.GradLemma using ( propIsEquiv ) ∃! : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃! = ∃!≈ _≡_ ∃!-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃!-syntax = ∃ syntax ∃!-syntax (λ x → B) = ∃![ x ] B IsSet : {ℓ : Level} (A : Set ℓ) → Set ℓ IsSet A = {x y : A} → (p q : x ≡ y) → p ≡ q record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where -- adding no-eta-equality can speed up type-checking. -- ONLY IF you define your categories with copatterns though. no-eta-equality field -- Need something like: -- Object : Σ (Set ℓ) isGroupoid Object : Set ℓ -- And: -- Arrow : Object → Object → Σ (Set ℓ') isSet Arrow : Object → Object → Set ℓ' 𝟙 : {o : Object} → Arrow o o _∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C infixl 10 _∘_ domain : { a b : Object } → Arrow a b → Object domain {a = a} _ = a codomain : { a b : Object } → Arrow a b → Object codomain {b = b} _ = b -- Thierry: All projections must be `isProp`'s -- According to definitions 9.1.1 and 9.1.6 in the HoTT book the -- arrows of a category form a set (arrow-is-set), and there is an -- equivalence between the equality of objects and isomorphisms -- (univalent). record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where open RawCategory ℂ -- (Object : Set ℓ) -- (Arrow : Object → Object → Set ℓ') -- (𝟙 : {o : Object} → Arrow o o) -- (_∘_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c) field assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } → h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f ident : {A B : Object} {f : Arrow A B} → f ∘ 𝟙 ≡ f × 𝟙 ∘ f ≡ f arrowIsSet : ∀ {A B : Object} → IsSet (Arrow A B) Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙 _≅_ : (A B : Object) → Set ℓb _≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f) idIso : (A : Object) → A ≅ A idIso A = 𝟙 , (𝟙 , ident) id-to-iso : (A B : Object) → A ≡ B → A ≅ B id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A) -- TODO: might want to implement isEquiv differently, there are 3 -- equivalent formulations in the book. Univalent : Set (ℓa ⊔ ℓb) Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B) field univalent : Univalent module _ {A B : Object} where Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁ Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where -- TODO, provable by using arrow-is-set and that isProp (isEquiv _ _ _) -- This lemma will be useful to prove the equality of two categories. IsCategory-is-prop : isProp (IsCategory ℂ) IsCategory-is-prop x y i = record { assoc = x.arrowIsSet x.assoc y.assoc i ; ident = ( x.arrowIsSet (fst x.ident) (fst y.ident) i , x.arrowIsSet (snd x.ident) (snd y.ident) i ) ; arrowIsSet = λ p q → let golden : x.arrowIsSet p q ≡ y.arrowIsSet p q golden = {!!} in golden i ; univalent = λ y₁ → {!!} } where module x = IsCategory x module y = IsCategory y record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where field raw : RawCategory ℓa ℓb {{isCategory}} : IsCategory raw private module ℂ = RawCategory raw Object : Set ℓa Object = ℂ.Object Arrow = ℂ.Arrow 𝟙 = ℂ.𝟙 _∘_ = ℂ._∘_ _[_,_] : (A : Object) → (B : Object) → Set ℓb _[_,_] = ℂ.Arrow _[_∘_] : {A B C : Object} → (g : ℂ.Arrow B C) → (f : ℂ.Arrow A B) → ℂ.Arrow A C _[_∘_] = ℂ._∘_ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where private open Category ℂ OpRaw : RawCategory ℓa ℓb RawCategory.Object OpRaw = Object RawCategory.Arrow OpRaw = Function.flip Arrow RawCategory.𝟙 OpRaw = 𝟙 RawCategory._∘_ OpRaw = Function.flip _∘_ open IsCategory isCategory OpIsCategory : IsCategory OpRaw IsCategory.assoc OpIsCategory = sym assoc IsCategory.ident OpIsCategory = swap ident IsCategory.arrowIsSet OpIsCategory = arrowIsSet IsCategory.univalent OpIsCategory = {!!} Opposite : Category ℓa ℓb raw Opposite = OpRaw Category.isCategory Opposite = OpIsCategory -- As demonstrated here a side-effect of having no-eta-equality on constructors -- means that we need to pick things apart to show that things are indeed -- definitionally equal. I.e; a thing that would normally be provable in one -- line now takes more than 20!! module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where private open RawCategory module C = Category ℂ rawOp : Category.raw (Opposite (Opposite ℂ)) ≡ Category.raw ℂ Object (rawOp _) = C.Object Arrow (rawOp _) = C.Arrow 𝟙 (rawOp _) = C.𝟙 _∘_ (rawOp _) = C._∘_ open Category open IsCategory module IsCat = IsCategory (ℂ .isCategory) rawIsCat : (i : I) → IsCategory (rawOp i) assoc (rawIsCat i) = IsCat.assoc ident (rawIsCat i) = IsCat.ident arrowIsSet (rawIsCat i) = IsCat.arrowIsSet univalent (rawIsCat i) = IsCat.univalent Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ raw (Opposite-is-involution i) = rawOp i isCategory (Opposite-is-involution i) = rawIsCat i module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where open Category unique = isContr IsInitial : Object ℂ → Set (ℓa ⊔ ℓb) IsInitial I = {X : Object ℂ} → unique (ℂ [ I , X ]) IsTerminal : Object ℂ → Set (ℓa ⊔ ℓb) -- ∃![ ? ] ? IsTerminal T = {X : Object ℂ} → unique (ℂ [ X , T ]) Initial : Set (ℓa ⊔ ℓb) Initial = Σ (Object ℂ) IsInitial Terminal : Set (ℓa ⊔ ℓb) Terminal = Σ (Object ℂ) IsTerminal