{-# OPTIONS --cubical #-} module Category where open import Agda.Primitive open import Data.Unit.Base open import Data.Product open import Cubical.PathPrelude postulate undefined : {ℓ : Level} → {A : Set ℓ} → A record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where field Object : Set ℓ Arrow : Object → Object → Set ℓ' 𝟙 : {o : Object} → Arrow o o _⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } → h ⊕ (g ⊕ f) ≡ (h ⊕ g) ⊕ f ident : { A B : Object } { f : Arrow A B } → f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f infixl 45 _⊕_ dom : { a b : Object } → Arrow a b → Object dom {a = a} _ = a cod : { a b : Object } → Arrow a b → Object cod {b = b} _ = b open Category public record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'}) : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where private open module C = Category C open module D = Category D field F : C.Object → D.Object f : {c c' : C.Object} → C.Arrow c c' → D.Arrow (F c) (F c') ident : { c : C.Object } → f (C.𝟙 {c}) ≡ D.𝟙 {F c} -- TODO: Avoid use of ugly explicit arguments somehow. -- This guy managed to do it: -- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''} → f (a' C.⊕ a) ≡ f a' D.⊕ f a FunctorComp : ∀ {ℓ ℓ'} {a b c : Category {ℓ} {ℓ'}} → Functor b c → Functor a b → Functor a c FunctorComp {a = a} {b = b} {c = c} F G = record { F = F.F ∘ G.F ; f = F.f ∘ G.f ; ident = λ { {c = obj} → let --t : (F.f ∘ G.f) (𝟙 a) ≡ (𝟙 c) g-ident = G.ident k : F.f (G.f {c' = obj} (𝟙 a)) ≡ F.f (G.f (𝟙 a)) k = refl {x = F.f (G.f (𝟙 a))} t : F.f (G.f (𝟙 a)) ≡ (𝟙 c) -- t = subst F.ident (subst G.ident k) t = undefined in t } ; distrib = undefined -- subst F.distrib (subst G.distrib refl) } where open module F = Functor F open module G = Functor G -- The identity functor Identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C Identity = record { F = λ x → x ; f = λ x → x ; ident = refl ; distrib = refl } module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where private open module ℂ = Category ℂ _+_ = ℂ._⊕_ Isomorphism : (f : ℂ.Arrow A B) → Set ℓ' Isomorphism f = Σ[ g ∈ ℂ.Arrow B A ] g + f ≡ ℂ.𝟙 × f + g ≡ ℂ.𝟙 Epimorphism : {X : ℂ.Object } → (f : ℂ.Arrow A B) → Set ℓ' Epimorphism {X} f = ( g₀ g₁ : ℂ.Arrow B X ) → g₀ + f ≡ g₁ + f → g₀ ≡ g₁ Monomorphism : {X : ℂ.Object} → (f : ℂ.Arrow A B) → Set ℓ' Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁ iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f -- Idea: Pre-compose with f- on both sides of the equality of eq to get -- g₀ + f + f- ≡ g₁ + f + f- -- which by left-inv reduces to the goal. iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq = trans (sym (fst ℂ.ident)) ( trans (cong (_+_ g₀) (sym right-inv)) ( trans ℂ.assoc ( trans (cong (λ x → x + f-) eq) ( trans (sym ℂ.assoc) ( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident)) ) ) ) ) iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f -- For the next goal we do something similar: Post-compose with f- and use -- right-inv to get the goal. iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq = trans (sym (snd ℂ.ident)) ( trans (cong (λ x → x + g₀) (sym left-inv)) ( trans (sym ℂ.assoc) ( trans (cong (_+_ f-) eq) ( trans ℂ.assoc ( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident) ) ) ) ) ) iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso data ⊥ : Set where ¬_ : {ℓ : Level} → Set ℓ → Set ℓ ¬ A = A → ⊥ {- epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f) epi-mono-is-not-iso f = let k = f {!!} {!!} {!!} {!!} in {!!} -} _≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ' _≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f) where open module ℂ = Category ℂ Product : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ} Product C D = record { Object = C.Object × D.Object ; Arrow = λ { (c , d) (c' , d') → let carr = C.Arrow c c' darr = D.Arrow d d' in carr × darr} ; 𝟙 = C.𝟙 , D.𝟙 ; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D} ; assoc = eqpair C.assoc D.assoc ; ident = let (Cl , Cr) = C.ident (Dl , Dr) = D.ident in eqpair Cl Dl , eqpair Cr Dr } where open module C = Category C open module D = Category D -- Two pairs are equal if their components are equal. eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)})) Opposite : ∀ {ℓ ℓ'} → Category {ℓ} {ℓ'} → Category {ℓ} {ℓ'} Opposite ℂ = record { Object = ℂ.Object ; Arrow = λ A B → ℂ.Arrow B A ; 𝟙 = ℂ.𝟙 ; _⊕_ = λ g f → f ℂ.⊕ g ; assoc = sym ℂ.assoc ; ident = swap ℂ.ident } where open module ℂ = Category ℂ CatCat : {ℓ ℓ' : Level} → Category {ℓ-suc (ℓ ⊔ ℓ')} {ℓ ⊔ ℓ'} CatCat {ℓ} {ℓ'} = record { Object = Category {ℓ} {ℓ'} ; Arrow = Functor ; 𝟙 = Identity ; _⊕_ = FunctorComp ; assoc = undefined ; ident = λ { {f = f} → let eq : f ≡ f eq = refl in undefined , undefined} } Hom : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → (A B : Object ℂ) → Set ℓ' Hom {ℂ = ℂ} A B = Arrow ℂ A B module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where private Obj = Object ℂ Arr = Arrow ℂ _+_ = _⊕_ ℂ HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B') → Hom {ℂ = ℂ} A B → Hom {ℂ = ℂ} A B' HomFromArrow _A g = λ f → g + f