{--- The Kleisli formulation of monads ---} {-# OPTIONS --cubical #-} open import Agda.Primitive open import Cat.Prelude open import Cat.Category open import Cat.Category.Functor as F open import Cat.Categories.Fun -- "A monad in the Kleisli form" [voe] module Cat.Category.Monad.Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where open import Cat.Category.NaturalTransformation ℂ ℂ using (NaturalTransformation ; Transformation ; Natural) private ℓ = ℓa ⊔ ℓb module ℂ = Category ℂ open ℂ using (Arrow ; identity ; Object ; _<<<_ ; _>>>_) -- | Data for a monad. -- -- Note that (>>=) is not expressible in a general category because objects -- are not generally types. record RawMonad : Set ℓ where field omap : Object → Object pure : {X : Object} → ℂ [ X , omap X ] bind : {X Y : Object} → ℂ [ X , omap Y ] → ℂ [ omap X , omap Y ] -- | functor map -- -- This should perhaps be defined in a "Klesli-version" of functors as well? fmap : ∀ {A B} → ℂ [ A , B ] → ℂ [ omap A , omap B ] fmap f = bind (pure <<< f) -- | Composition of monads aka. the kleisli-arrow. _>=>_ : {A B C : Object} → ℂ [ A , omap B ] → ℂ [ B , omap C ] → ℂ [ A , omap C ] f >=> g = f >>> (bind g) -- | Flattening nested monads. join : {A : Object} → ℂ [ omap (omap A) , omap A ] join = bind identity ------------------ -- * Monad laws -- ------------------ -- There may be better names than what I've chosen here. -- `pure` is the neutral element for `bind` IsIdentity = {X : Object} → bind pure ≡ identity {omap X} -- pure is the left-identity for the kleisli arrow. IsNatural = {X Y : Object} (f : ℂ [ X , omap Y ]) → pure >=> f ≡ f -- Composition interacts with bind in the following way. IsDistributive = {X Y Z : Object} (g : ℂ [ Y , omap Z ]) (f : ℂ [ X , omap Y ]) → (bind f) >>> (bind g) ≡ bind (f >=> g) RightIdentity = {A B : Object} {m : ℂ [ A , omap B ]} → m >=> pure ≡ m -- | Functor map fusion. -- -- This is really a functor law. Should we have a kleisli-representation of -- functors as well and make them a super-class? Fusion = {X Y Z : Object} {g : ℂ [ Y , Z ]} {f : ℂ [ X , Y ]} → fmap (g <<< f) ≡ fmap g <<< fmap f -- In the ("foreign") formulation of a monad `IsNatural`'s analogue here would be: IsNaturalForeign : Set _ IsNaturalForeign = {X : Object} → join {X} <<< fmap join ≡ join <<< join IsInverse : Set _ IsInverse = {X : Object} → join {X} <<< pure ≡ identity × join {X} <<< fmap pure ≡ identity record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isIdentity : IsIdentity isNatural : IsNatural isDistributive : IsDistributive -- | Map fusion is admissable. fusion : Fusion fusion {g = g} {f} = begin fmap (g <<< f) ≡⟨⟩ bind ((f >>> g) >>> pure) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (f >>> (g >>> pure)) ≡⟨ cong (λ φ → bind (f >>> φ)) (sym (isNatural _)) ⟩ bind (f >>> (pure >>> (bind (g >>> pure)))) ≡⟨⟩ bind (f >>> (pure >>> fmap g)) ≡⟨⟩ bind ((fmap g <<< pure) <<< f) ≡⟨ cong bind (sym ℂ.isAssociative) ⟩ bind (fmap g <<< (pure <<< f)) ≡⟨ sym distrib ⟩ bind (pure <<< g) <<< bind (pure <<< f) ≡⟨⟩ fmap g <<< fmap f ∎ where distrib : fmap g <<< fmap f ≡ bind (fmap g <<< (pure <<< f)) distrib = isDistributive (pure <<< g) (pure <<< f) -- | This formulation gives rise to the following endo-functor. private rawR : RawFunctor ℂ ℂ RawFunctor.omap rawR = omap RawFunctor.fmap rawR = fmap isFunctorR : IsFunctor ℂ ℂ rawR IsFunctor.isIdentity isFunctorR = begin bind (pure <<< identity) ≡⟨ cong bind (ℂ.rightIdentity) ⟩ bind pure ≡⟨ isIdentity ⟩ identity ∎ IsFunctor.isDistributive isFunctorR {f = f} {g} = begin bind (pure <<< (g <<< f)) ≡⟨⟩ fmap (g <<< f) ≡⟨ fusion ⟩ fmap g <<< fmap f ≡⟨⟩ bind (pure <<< g) <<< bind (pure <<< f) ∎ -- FIXME Naming! R : EndoFunctor ℂ Functor.raw R = rawR Functor.isFunctor R = isFunctorR private R⁰ : EndoFunctor ℂ R⁰ = Functors.identity R² : EndoFunctor ℂ R² = F[ R ∘ R ] module R = Functor R module R⁰ = Functor R⁰ module R² = Functor R² pureT : Transformation R⁰ R pureT A = pure pureN : Natural R⁰ R pureT pureN {A} {B} f = begin pureT B <<< R⁰.fmap f ≡⟨⟩ pure <<< f ≡⟨ sym (isNatural _) ⟩ bind (pure <<< f) <<< pure ≡⟨⟩ fmap f <<< pure ≡⟨⟩ R.fmap f <<< pureT A ∎ joinT : Transformation R² R joinT C = join joinN : Natural R² R joinT joinN f = begin join <<< R².fmap f ≡⟨⟩ bind identity <<< R².fmap f ≡⟨⟩ R².fmap f >>> bind identity ≡⟨⟩ fmap (fmap f) >>> bind identity ≡⟨⟩ fmap (bind (f >>> pure)) >>> bind identity ≡⟨⟩ bind (bind (f >>> pure) >>> pure) >>> bind identity ≡⟨ isDistributive _ _ ⟩ bind ((bind (f >>> pure) >>> pure) >=> identity) ≡⟨⟩ bind ((bind (f >>> pure) >>> pure) >>> bind identity) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (bind (f >>> pure) >>> (pure >>> bind identity)) ≡⟨ cong (λ φ → bind (bind (f >>> pure) >>> φ)) (isNatural _) ⟩ bind (bind (f >>> pure) >>> identity) ≡⟨ cong bind ℂ.leftIdentity ⟩ bind (bind (f >>> pure)) ≡⟨ cong bind (sym ℂ.rightIdentity) ⟩ bind (identity >>> bind (f >>> pure)) ≡⟨⟩ bind (identity >=> (f >>> pure)) ≡⟨ sym (isDistributive _ _) ⟩ bind identity >>> bind (f >>> pure) ≡⟨⟩ bind identity >>> fmap f ≡⟨⟩ bind identity >>> R.fmap f ≡⟨⟩ R.fmap f <<< bind identity ≡⟨⟩ R.fmap f <<< join ∎ pureNT : NaturalTransformation R⁰ R fst pureNT = pureT snd pureNT = pureN joinNT : NaturalTransformation R² R fst joinNT = joinT snd joinNT = joinN isNaturalForeign : IsNaturalForeign isNaturalForeign = begin fmap join >>> join ≡⟨⟩ bind (join >>> pure) >>> bind identity ≡⟨ isDistributive _ _ ⟩ bind ((join >>> pure) >>> bind identity) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (join >>> (pure >>> bind identity)) ≡⟨ cong (λ φ → bind (join >>> φ)) (isNatural _) ⟩ bind (join >>> identity) ≡⟨ cong bind ℂ.leftIdentity ⟩ bind join ≡⟨⟩ bind (bind identity) ≡⟨ cong bind (sym ℂ.rightIdentity) ⟩ bind (identity >>> bind identity) ≡⟨⟩ bind (identity >=> identity) ≡⟨ sym (isDistributive _ _) ⟩ bind identity >>> bind identity ≡⟨⟩ join >>> join ∎ isInverse : IsInverse isInverse = inv-l , inv-r where inv-l = begin pure >>> join ≡⟨⟩ pure >>> bind identity ≡⟨ isNatural _ ⟩ identity ∎ inv-r = begin fmap pure >>> join ≡⟨⟩ bind (pure >>> pure) >>> bind identity ≡⟨ isDistributive _ _ ⟩ bind ((pure >>> pure) >=> identity) ≡⟨⟩ bind ((pure >>> pure) >>> bind identity) ≡⟨ cong bind ℂ.isAssociative ⟩ bind (pure >>> (pure >>> bind identity)) ≡⟨ cong (λ φ → bind (pure >>> φ)) (isNatural _) ⟩ bind (pure >>> identity) ≡⟨ cong bind ℂ.leftIdentity ⟩ bind pure ≡⟨ isIdentity ⟩ identity ∎ rightIdentity : RightIdentity rightIdentity {m = m} = begin m >=> pure ≡⟨⟩ m >>> bind pure ≡⟨ cong (m >>>_) isIdentity ⟩ m >>> identity ≡⟨ ℂ.leftIdentity ⟩ m ∎ record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public private module _ (raw : RawMonad) where open RawMonad raw propIsIdentity : isProp IsIdentity propIsIdentity x y i = ℂ.arrowsAreSets _ _ x y i propIsNatural : isProp IsNatural propIsNatural x y i = λ f → ℂ.arrowsAreSets _ _ (x f) (y f) i propIsDistributive : isProp IsDistributive propIsDistributive x y i = λ g f → ℂ.arrowsAreSets _ _ (x g f) (y g f) i open IsMonad propIsMonad : (raw : _) → isProp (IsMonad raw) IsMonad.isIdentity (propIsMonad raw x y i) = propIsIdentity raw (isIdentity x) (isIdentity y) i IsMonad.isNatural (propIsMonad raw x y i) = propIsNatural raw (isNatural x) (isNatural y) i IsMonad.isDistributive (propIsMonad raw x y i) = propIsDistributive raw (isDistributive x) (isDistributive y) i module _ {m n : Monad} (eq : Monad.raw m ≡ Monad.raw n) where private eqIsMonad : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] eqIsMonad = lemPropF propIsMonad eq Monad≡ : m ≡ n Monad.raw (Monad≡ i) = eq i Monad.isMonad (Monad≡ i) = eqIsMonad i